“This is a very ancient molecule,” says Sue Carter, a neuroscientist at Indiana University in Bloomington, whose lab pioneered many of the early studies of oxytocin in voles. “It has been used and reused for many purposes across the evolution of modern animals, and almost everybody who's tried to look at an effect of oxytocin on anything like social behaviour has found something.”
It was also shown recently that delivery of Fgfs by release from peptide nanofibers, a gradual local delivery system, can increase neovascularization and reduce in-farct size in the ischemic rodent heart (Engel et al., 2006). Related to this, zebrafish have a natural ability to synthesize Fgfs after myocardial injury, a signal that appears to recruit Fgf receptor-expressing epicardial-derived cells toward regenerating muscle (Lepilina et al., 2006). Thus, what has been and what will be discovered about zebrafish heart regeneration is quite likely to illuminate possible strategies for enhancing regeneration in the mammalian heart (see Chapter 14.4).
Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it.

For all its positivity, however, oxytocin has a dark side. Or, more accurately, it plays a more complex role in human behavior than is commonly thought. As a facilitator of bonding among those who share similar characteristics, the hormone fosters distinctions between in-group and out-group members, and sets in motion favoritism toward in-group members and prejudice against those in out-groups. Ongoing research on the hormone is a potent reminder of the complexity of biological and psychological systems.
This may be an odd question. But would this be good to inject or spray on those that have undergone hair transplants in the first month of surgery. Fue microscars. I see you mention it improves hair growth and blood flow. both which basically what rogaine claims to do. Surely this would benefit new transplanted hair follicles in taking and holding? Interested in your thoughts in the matter.
Thymosin Beta 4 is a peptide that was first found within the thymus gland. Since its discovery, other types of thymosin have been found in different tissues throughout test subjects. Thymosin Beta 4 is typically found in both types of muscles – skeletal (the muscles that are required to move) and smooth muscles (such as the heart). When damage occurs in a tissue, Thymosin Beta 4 is upregulated. Then when traumas take place, Thymosin Beta 4 is released in order to help the subject heal from the trauma. This peptide also helps to prevent adhesions from forming, which means there will be less scar tissue and potentially more flexibility. It has potent anti-inflammatory characteristics.
This mother-child bonding is the most glorified myth that is not re-thought as often as it should. Its apparant purpose is just to make a dangerously selfish mother (such frustrated mothers do exist a lot more than we read in the news) to think twice before harming her defenseless child which is oftentimes in her sole custody in our society. Acts of such mothers are branded as mental illness rather than plain cruelty. While most people (men and women alike) tend to protect, and not harm a child, the real bonding can happen beetween two independent, mature adults.

It would have been interesting if Bartz had asked about *both* parents’ parenting styles. (Spoken by a guy writing a book on fathers.) It would have been easy enough; just add another question. Any differences between perceptions of mothers and fathers might have been illuminating. But, as in so much family research, fathers were once again ignored or excluded. (As if fathers don’t have parenting styles…)
I broke my neck this year at C6-C7 facets. Started taking TB-500 immediately following the accident. I don’t sit still well and was back in the gym almost immediately, simply to not go stir crazy and pump the blood anyway I could. 8 weeks later I was hitting bodyweight overhead squats for reps with the jerk, 0 pain and completely stable spine. I’m in my late 30s. I eat well, sleep well, and drink a lot of water. I doubt I would have been as well off, had I not taken the TB.
One way to clarify that question is to give individuals oxytocin rather than just measure naturally occurring levels. In experiments by couple therapist and researcher Beate Ditzen at the University of Zurich, couples each sprayed a liquid containing oxytocin up their noses (which ensures that the hormone reaches the brain). Ditzen then got them to talk with each other about an issue that both partners said often lead to disagreement or fighting, such as who did the housework or how they spent their free time. She observed how they communicated with each other during the discussion compared with couples who didn’t get the hormone.
Cells were pretreated with indicated concentrations of Tβ4 peptide for 2 hours, post-incubated with 200 μM H2O2 for 48 hours, and then conditioned medium (CM) was collected. Mouse BMMs were cultured with CM in the presence of M-CSF (30 ng/mL) and RANKL (100 ng/mL), as described in Materials and methods. After 5 days, cells were fixed and stained for TRAP as a marker of osteoclasts (A), and the number of TRAP-positive multinucleated cells (MNCs) was scored (B). TRAP osteoclast activity was assayed using the TRAP cytochemical stain technique (C). * Statistically significant differences compared with the control, p<0.05. The data presented were representative of three independent experiments.
My physiotherapist suggested BCP-157. We injected this into the palm for a few weeks 3x week. We then worked up a 50/50 mix of BCP and TB500. I’ve upped my injections ( 5-7 injections) into the surrounding areas of the protruding nodes in my palm. The results have been significant. Into week 6 of a 3x injection program, and the chords are opening up (reacting to the ‘rematrixing’ of the cells). The TB seems to disperse the liquid throughout my palm. My ‘clutched palm’ is reduced and flexibility is restored. We’re going to stick with this for another couple of months.
Advice & Tips: 5-HTP is a serotonin precursor. Serotonin is well-known as a hormone that affects one's mood in a positive way, but it is probably less-well known that it increases intestinal motility. It has worked magic for my symptoms. I am completely regular now, and the majority of my days are good days, whereas before I began taking it the majority of my days were bad days that began with symptoms of constipation and intestinal pain or discomfort. For me, at least, this is not a prescription. I began taking 5-HTP after my fiancee'--who had already been taking it to help her mood and, primarily, her difficulty sleeping through the night--learned it can be helpful when taken for gastrointestinal motility, and I began taking it myself shortly after that (and felt its effects almost immediately). Although not entirely unexpected, my slightly enhanced good moods are a nice side benefit of taking the supplement. I do get some very mild undesirable side effects, especially during mid-day when I take twice my morning and evening dose of 100 mg. Sometimes my face feels hot and flushes fairly noticeably--and this may be intensified with eating--but those symptoms subside within probably 30 minutes or less.
Thymosin beta-4 is a very large molecule. In fact, it is so large that it cannot fit entirely into the receptor. Different sections of the molecule have different activities. TB-500 is the part of thymosin beta-4 hormone which promotes the most useful effects (overall healing, repair, new blood and muscle cells). For medical applications it is more practical to use the TB-500 instead of the entire Thymosin Beta-4 protein.
The information provided on this site is for informational purposes only and is not intended as a substitute for advice from your physician or other health care professional or any information contained on or in any product label or packaging. You should not use the information on this site for diagnosis or treatment of any health problem or for prescription of any medication or other treatment. You should consult with a healthcare professional before starting any diet, exercise or supplementation program, before taking any medication, or if you have or suspect you might have a health problem. You should not stop taking any medication without first consulting your physician.

Researchers often investigate the effects of hormones on behavior in laboratory experiments with student subjects. Some studies show that when you give people oxytocin they become more generous and trusting. In others that administer testosterone to men, the opposite happens. The strength of such studies is that they can demonstrate cause and effect – the behavior change only occurs in subjects receiving hormones, not in those who get a placebo. But this research has weaknesses as well: it often focuses on single hormones, ignoring their potential interactions, and behavior is measured with highly artificial tasks.
Ultimately, this lack of literature on the drug best serves to illustrate the recklessness of Stephen Dank in committing to something so experimental in nature. Perhaps he was privy to anecdotal evidence the rest of us weren’t. The drug has been used by amateur athletes and bodybuilders, and reportedly in the equine industry. Nevertheless, any benefits are unsubstantiated, which lends to an exasperation shared by supporters as to why Dank would risk so much for a substance that potentially offers no advantage at all. As a supporter, I would have much preferred a drug that allowed us to hit a target inside 50.
There have been some side effects reported while using Melanotan 2, typically these effects appear during the first few days of dosing and will become increasingly less obvious as the body adjusts to the peptide. These effects include: nausea, appetite loss, drowsiness and increased sex drive. In order to combat nausea, an anti-histamine can be taken when injecting until the body gets used to it. But most common way to deal with this is to inject Melanotan before bed, this is also beneficial to combat any drowsiness.

People are using 5-HTP for absolutely everything from sleep disorders to OCD symptoms. After asking people in mental health Facebook groups whether they used it and why, I was inundated with responses. Sach Tennant, from London, takes it for her PMDD (premenstrual dysphoric disorder). "I only take it when I feel low and it only takes one hour to feel calm," she told me. "This month I only needed one to feel better. I don't get the zombie antidepressant feeling – you still have your emotions. Sleep is good on it. I used to have an inner voice that was male and used to bully me during PMT time. Noises seemed too loud, even like somebody eating a bag of crisps. Topping up with 5-HTP has stopped all this."

A number of factors can inhibit oxytocin release, among them acute stress. For example, oxytocin neurons are repressed by catecholamines, which are released from the adrenal gland in response to many types of stress, including fright. As a practical endocrine tip - don't wear a gorilla costume into a milking parlor full of cows or set off firecrackers around a mother nursing her baby.


In regards to interventions, one study in treatment resistant depressed persons that combination therapy of 5-HTP with Carbidopa noted that 43 out of 99 (43.4%) patients improved with an average 200mg (variable 50-600mg) dosage of 5-HTP.[24] It has been noted[25] that since Cardidopa is a peripheral decarboxylase inhibitor that can prevent metabolism of monoamines including serotonin[26] that these results are unlikely to reflect monotherapy with 5-HTP, despite being within the 30-45% range sometimes seen with the placebo effect.[25][27]

A and B; Mouse BMMs were cultured with 200 μM H2O2 and indicated concentrations of Tβ4 peptide in the presence of M-CSF (30 ng/mL) and RANKL (100 ng/mL). C and D; PDLCs were co-cultured with mouse BMMs in the presence of M-CSF, RANKL, 200 μM H2O2, and indicated concentrations of Tβ4 peptide. To monitor osteoclast differentiation, both TRAP activity and the number of TRAP multinucleated cells were examined. * Statistically significant difference compared with control, p<0.05. The data presented were representative of three independent experiments.
Oxytocin is a versatile actor, whose resume includes all sorts of jobs in sex, reproduction, social behaviour and emotions.  It can increase trust among people and make them more cooperative (this works in meerkats, too). It can increase the social skills of autistic people. It’s released during orgasm. It affects lactating breasts, contracting wombs and the behaviour of sheep mothers towards their newly born lambs. The list goes on: drug addiction, generosity, depression, empathy, learning, memory.

To determine the direct effect of Tβ4 peptide on osteoclastogenesis, mouse BMMs were directly exposed to Tβ4 peptide. Direct treatment with Tβ4 peptide also reduced the number of multinucleated TRAP-positive cells and TRAP activity in a dose-dependent manner (Fig 7A and 7B). Since Tβ4 downregulated H2O2-induced various cytokines expression, the indirect effect of Tβ4 on osteoclast formation through PDLC cells using co-culture system were investigated. After addition of Tβ4 peptide to the BMMs-PDLCs co-culture, the number of osteoclast and TRAP activity were also significantly decreased (Fig 7C and 7D).
Nasally administered oxytocin has been reported to reduce fear, possibly by inhibiting the amygdala (which is thought to be responsible for fear responses).[76] Indeed, studies in rodents have shown oxytocin can efficiently inhibit fear responses by activating an inhibitory circuit within the amygdala.[77][78] Some researchers have argued oxytocin has a general enhancing effect on all social emotions, since intranasal administration of oxytocin also increases envy and Schadenfreude.[79] Individuals who receive an intranasal dose of oxytocin identify facial expressions of disgust more quickly than individuals who do not receive oxytocin.[75][qualify evidence] Facial expressions of disgust are evolutionarily linked to the idea of contagion. Thus, oxytocin increases the salience of cues that imply contamination, which leads to a faster response because these cues are especially relevant for survival. In another study, after administration of oxytocin, individuals displayed an enhanced ability to recognize expressions of fear compared to the individuals who received the placebo.[80] Oxytocin modulates fear responses by enhancing the maintenance of social memories. Rats that are genetically modified to have a surplus of oxytocin receptors display a greater fear response to a previously conditioned stressor. Oxytocin enhances the aversive social memory, leading the rat to display a greater fear response when the aversive stimulus is encountered again.[74]
There are several layers in the skin; the outer epidermis and beneath it the dermis and the subcutaneous layer. Cells in the epidermis include keratinocytes, its major cell type, that move continuously from the lower basal layer where they are formed by cell division. Other cells in the epidermis are the melanocytes that synthesize pigment and transfer it to the keratinocytes, giving our skin its color, and a wide variety of immune cells that maintain immune surveillance and secrete substances called cytokines, like interleukin 1 and 2, which are active in inflammation. The dermis contains connective tissue, mainly collagen, blood vessels, various types of immune white cells and fibroblasts.

Cells were incubated for 48 hours with the indicated times with 200 μM H2O2 (A) and the indicated concentrations of H2O2 (B) for 48 hours. The mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. Data were representative of three independent experiments. The bar graph shows the fold increase in protein or mRNA expression compared with control cells. * Statistically significant differences compared with the control, p<0.05.

Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity worldwide. No effective pharmacological treatments are available for TBI because all Phase II/III TBI clinical trials have failed. This highlights a compelling need to develop effective treatments for TBI. Endogenous neurorestoration occurs in the brain after TBI, including angiogenesis, neurogenesis, synaptogenesis, oligodendrogenesis and axonal remodeling, which may be associated with spontaneous functional recovery after TBI. However, the endogenous neurorestoration following TBI is limited. Treatments amplifying these neurorestorative processes may promote functional recovery after TBI. Thymosin beta4 (Tβ4) is the major G-actin-sequestering molecule in eukaryotic cells. In addition, Tβ4 has other properties including anti-apoptosis and anti-inflammation, promotion of angiogenesis, wound healing, stem/progenitor cell differentiation, and cell migration and survival, which provide the scientific foundation for the corneal, dermal, and cardiac wound repair multicenter clinical trials. Here, we describe Tβ4 as a neuroprotective and neurorestorative candidate for treatment of TBI.
One way to clarify that question is to give individuals oxytocin rather than just measure naturally occurring levels. In experiments by couple therapist and researcher Beate Ditzen at the University of Zurich, couples each sprayed a liquid containing oxytocin up their noses (which ensures that the hormone reaches the brain). Ditzen then got them to talk with each other about an issue that both partners said often lead to disagreement or fighting, such as who did the housework or how they spent their free time. She observed how they communicated with each other during the discussion compared with couples who didn’t get the hormone.
These studies demonstrate that in the animal model of TBI, early (6 hours post injury) treatment with Tβ4 i.p. at doses of 6 and 30 mg/kg reduces cortical lesion volume and hippocampal cell loss and improves functional recovery, suggesting its potential as a neuroprotective therapy for TBI. More importantly, delayed (24 hours post injury) treatment with Tβ4 administered i.p. at a dose of 6 mg/kg does not reduce lesion volume but significantly improves functional outcome in rats.34 Tβ4-induced angiogenesis, neurogenesis and oligodendrogenesis may contribute to functional recovery.34 Therefore, our data suggest that promoting endogenous neurorestorative processes using Tβ4 provides a novel therapeutic option for TBI. It should be noted that systemic administration of Tβ4 is safe and well-tolerated by animals and humans.26 Further investigation of the molecular mechanisms underlying Tβ4-mediated neuroprotection and neurorestoration is warranted.

The information provided on this site is for informational purposes only and is not intended as a substitute for advice from your physician or other health care professional or any information contained on or in any product label or packaging. You should not use the information on this site for diagnosis or treatment of any health problem or for prescription of any medication or other treatment. You should consult with a healthcare professional before starting any diet, exercise or supplementation program, before taking any medication, or if you have or suspect you might have a health problem. You should not stop taking any medication without first consulting your physician.
Oxytocin's story starts back in the early 1900s, when biochemists discovered that a substance from the posterior pituitary gland could promote labour contractions and lactation. When scientists later discovered the hormone responsible, they named it oxytocin after the Greek phrase meaning 'rapid birth'. Oxytocin is produced mainly by the brain's hypothalamus; in the 1970s, studies revealed that oxytocin-producing neurons send signals throughout the brain, suggesting that the hormone had a role in regulating behaviour.

Jump up ^ Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N, Stoffler D, Aebi U, Mannherz HG (Jan 2002). "Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin". Journal of Molecular Biology. 315 (4): 613–25. doi:10.1006/jmbi.2001.5281. PMID 11812134.
Melanotan II is a synthetic analogue of the α-melanocyte stimulating hormone (α-MSH). α-MSH is a melanocortin I receptor agonist which has a role in human pigmentation by stimulating production of eumelanin. As melanotan II is a non-specific melanocortin receptor agonist, it has been reported to cause toxicity effects involving the many physiological systems affected by the receptors.
As shown in Figure 1, thymic hormones also modulate the production of hypothalamus pituitary hormones and neuropeptides. Initial experiments revealed that neonatal thymectomy promotes a decrease in the number of secretory granules in acidophic cells of the adenopituitary [44]. In the same vein, athymic nude mice display low levels of various pituitary hormones, such as PRL, GH, LH and FSH [45]. With regard to thymic peptides, thymosin beta-4, when perfused intraventricularly, stimulates LH and LHRH secretion [46]. Similar results were obtained with another thymic peptide, thymulin, in perfused or fragmented pituitary preparations [47]. The administration of thymopoietin (another chemically-defined thymic hormone) in children with Hodgkin’s disease increased GH and cortisol serum levels [48]. Moreover, thymopentin (the synthetic biologically active peptide of thymopoietin) enhances in vitro the production of ACTH and beta-endorphin [49]. In addition, thymulin exhibits an in vitro stimulatory effect on perfused rat pituitaries, enhancing PRL, GH, TSH and LH release [50]. Using short-term cultures of pituitary fragments, an increase in ACTH secretion occurs after in vitro thymulin addition, with no changes in GH levels and significant reductions in PRL release [47]. A further thymosin peptide was recently isolated with the task in stimulating IL-6 release from rat glioma cells [51]. By contrast, thymosin alpha-1 is apparently able to down regulate TSH, ACTH and PRL secretion in vivo with no modifications on GH levels [52]. These inhibitory effects seem to occur through hypothalamic pathways. Indeed, the production of the corresponding releasing hormones by hypothalamic neurones decreased after in vitro addition of thymosin alpha-1 in medial basal hypothalamic fragments [52].

Cells on the surface of the skin are constantly being replaced by regeneration from below. The repair of a wound is a scaling up of this normal process, with additional complex interactions among cells, formation of new blood vessels, collagen, more extensive cell division and cell migration, as well as strict control of inflammatory cells and the cytokines they release to resolve the inflammation.
A: 5-HTP is classified as a dietary supplement. Because dietary supplements have not been thoroughly studied in the clinical setting, possible side effects and interactions with other drugs are not well-known. Also, because herbs and supplements are not strictly regulated by the U.S. Food and Drug Administration (FDA), these products are not required to be tested for effectiveness, purity, or safety. In general, dietary supplements should only be taken under the supervision of your health care provider. For more specific information, consult with your pharmacist about the potential for drug interactions based on your specific condition and current medications, particularly before taking any action. When your doctor prescribes a new medication, be sure to discuss all your prescription and over-the-counter drugs, including dietary supplements, vitamins, botanicals, minerals, and herbals, as well as the foods you eat. Always keep a current list of the drugs and supplements you take and review it with your health care providers and your pharmacist. If possible, use one pharmacy for all your prescription medications and over-the-counter products. This allows your pharmacist to keep a complete record of all your prescription drugs and to advise you about drug interactions and side effects. For more specific information, consult with your doctor or pharmacist for guidance based on your health status and current medications, particularly before taking any action. Jen Marsico, RPh
Oxytocin in a nine amino acid peptide that is synthesized in hypothalamic neurons and transported down axons of the posterior pituitary for secretion into blood. Oxytocin is also secreted within the brain and from a few other tissues, including the ovaries and testes. Oxytocin differs from antidiuretic hormone in two of the nine amino acids. Both hormones are packaged into granules and secreted along with carrier proteins called neurophysins.
There is a possibility Melanotan may some day present a viable solution to achieving a “healthy tan” in line with current western beauty ideals. But it also creates new forms of risk concerning needle safety, unsettling patient-practitioner relationships via unregulated use, and the subversion of public health messages that groups such as Cancer Council Australia have worked for decades to promote.
Recently, therapeutic biomolecules such as growth factors provide great potential as an alternative therapeutic approach to traditional periodontal wound healing [61]. However, because of the short half-lives of growth factors and polynucleotides in the body and the necessity to deliver to specific target sites, those medicinal substances do not always exhibit the anticipated therapeutic potency and outcomes [62]. Thus, optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of biomolecules. For considering the application of Tβ4 in clinical trials, target cells of exogenous Tβ4 should be restricted to cells in the periodontal tissue.
The full-length Tβ4 polypeptide has been shown to be effective in reducing inflammation [44]. It is also reported that only the 4-AA, amino-terminal peptide of Tβ4, known as Ac-SDKP, can block inflammation [45]. In this study, we used a synthetically human peptide produced copy of a naturally occurring, highly conserved 43-amino acid (MW = 4964 Da) water soluble acidic peptide, originally isolated from bovine thymus tissue [46]. This peptide is produced by Fmoc solid-phase peptide synthesis in accordance with the current Good Manufacturing Practice (cGMP) regulations (21 CFR 210 and 211) of the FDA [47]. An effective healer, Tβ4 can be administered topically on the surface of cells and systemically, through injection [9–11]. In this study, Tβ4 activation by Tβ4 peptide inhibited H2O2-induced production of NO and PGE2, expression of COX-2 and iNOS, and mRNA expression of TNF- α, IL-1β, -6, -8, and -17 in cultured PDLCs. These findings suggested that Tβ4 activation possessed anti-inflammatory activity in PDLCs. These results were consistent with previous in vivo and in vitro studies [9–15]. MAPK is a proline-directed serine/threonine kinase consisting of three-enzyme modules; its targets, inducing ERK, JNK and p38 kinases, are important in cellular signal transduction pathways and exert an anti-inflammatory response [48, 49]. NF-κB is a major transcription factor involved in the release of proteins that mediate the inflammatory response, and the degradation and phosphorylation of Iκ-Bα are necessary to release NF-κB from the cytoplasmic NF-κB/Iκ-Bα complex and allow its subsequent translocation to the nucleus of the cell [50]. In this study, Tβ4 peptide down-regulated the H2O2-triggered activation of the ERK and JNK MAPKs and the NF-κB in PDLCs. These results suggested that the ERK and JNK MAPKs and the NF-κB pathway may be involved in the anti-inflammatory effects of Tβ4 activation in PDLCs. Consistent with our findings, Tβ4 treatment decreased TNF-α-induced NF-κB activation in human corneal epithelial cells [51].
5-HTP (5-Hydroxytryptophan) is a chemical by-product of the protein building block L-tryptophan. It is also produced commercially from the seeds of an African plant known as Griffonia simplicifolia 5-HTP is used for sleep disorders such as insomnia, depression, anxiety, migraine and tension-type headaches, fibromyalgia, obesity, premenstrual syndrome (PMS), premenstrual dysphoric disorder (PMDD), attention deficit-hyperactivity disorder (ADHD), seizure disorder, and Parkinson's disease..
×