Cells that line blood vessels (endothelial cells), taken from human umbilical chord veins, were grown in culture and the layer of cells subjected to a scratch wound. Cultures were then treated with Tb4 or kept in growth medium without Tb4. When examined four hours later, Tb4 treatment attracted cells to migrate into the wound and accelerated their movement, showing it is a chemoattractant. Cell migration was four to six times faster in the presence of Tb4 compared to the migration of untreated cells. Tb4 also hastened wound closure and increased the production of enzymes, called metalloproteases, that could pave the way for angiogenesis by breaking down barrier membranes and facilitating the invasion of new cells to the needy area, to form new vessels. Other experiments showed Tb4 acts in vivo. When endothelial cells were implanted under the skin in a gel supplemented with Tb4, the cells formed vessel-like structures containing red blood cells, indicating the ability to stimulate angiogenesis in the animals.


The short half-life (<2h)[16] of 5-HTP may inherently limit the therapeutic potential of 5-HTP,[17] as the systemic 5-HTP exposure levels will fluctuate substantially, even with relatively frequent dosing. Such exposure fluctuations are usually associated with increased adverse event burden, resulting from Cmax drug spikes, and decreased clinical efficacy resulting from sub-therapeutic exposure for large parts of the day. It has been proposed that 5-HTP dosage forms achieving prolonged delivery would be more effective,[17] as is generally the situation with short-acting active pharmaceutical ingredients.[18]

If you were to go on the internet, read the hype, you'd probably think it'll be something like having an ecstasy tablet or having an orgasm or something like that, but the reality is you probably wouldn't be able to distinguish it from placebo. So the effects are extremely subtle. Now, that subtlety isn't necessarily because of oxytocin itself being a subtle hormone, it's just this issue of it penetrating the brain. So when you take it intranasally, we're still trying to work out how much gets into the brain, but probably only a vanishingly small amount.


Every effort has been made to ensure that the information provided by on this page is accurate, up-to-date, and complete, but no guarantee is made to that effect. Drug information contained herein may be time sensitive. The information on this page has been compiled for use by healthcare practitioners and consumers in the United States and therefore neither Everyday Health or its licensor warrant that uses outside of the United States are appropriate, unless specifically indicated otherwise. Neither Everyday Health nor its licensors endorse drugs, diagnose patients or recommend therapy. The drug information above is an informational resource designed to assist licensed healthcare practitioners in caring for their patients and/or to serve consumers viewing this service as a supplement to, and not a substitute for, the expertise, skill, knowledge and judgment of healthcare practitioners. The absence of a warning for a given drug or drug combination in no way should be construed to indicate that the drug or combination is safe, effective or appropriate for any given patient. Neither Everyday Health nor its licensor assume any responsibility for any aspect of healthcare administered with the aid of the information provided. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have any questions about the drugs you are taking, check with your doctor, nurse or pharmacist.
Evidence accumulated over the past decades has overturned the traditional dogma that the adult mammalian brain cannot generate new neurons. Adult neurogenesis has been identified in all vertebrate species examined thus far including humans.44-49 Newly generated neuronal cells originate from neural stem cells in the adult brain. Neural stem cells are the self-renewing, multipotent cells that generate the neuronal and glial cells of the nervous system.50 The major function of neurogenesis in adult brain seems to replace the neurons that die regularly in certain brain areas. Granule neurons in the DG continuously die and the progenitors in the subgranular zone of the DG may proliferate at the same rate as mature neuronal death to maintain a constant DG cell number.51 Similarly, the newly proliferated cells from the subventricular zone migrate and replenish the dead olfactory bulb neurons.52 Here, we focus on DG neurogenesis which is important for spatial learning and memory. In normal adult rats, newborn neural cells migrate from the subgranular zone of the DG of the hippocampus into the granule cell layer and eventually become mature granule neurons.53 These new granule neurons extend axonal processes to their postsynaptic targets54-57 and receive synaptic input.58 TBI stimulates widespread cellular proliferation in rats and results in focal neurogenesis in the DG of the hippocampus.59,60 Some of the newly generated granule neurons integrate into the hippocampus. The integration of the injury-induced neurogenic population into the existing hippocampal circuitry coincides with the time point when cognitive recovery is observed in injured animals.44
Jump up ^ Grottesi A, Sette M, Palamara T, Rotilio G, Garaci E, Paci M (1998). "The conformation of peptide thymosin alpha 1 in solution and in a membrane-like environment by circular dichroism and NMR spectroscopy. A possible model for its interaction with the lymphocyte membrane". Peptides. 19 (10): 1731–8. doi:10.1016/S0196-9781(98)00132-6. PMID 9880079.
Serotonin influences sleep and sleep-wake cycles in many ways, and scientists continue to make discoveries about how this important neurochemical affects our sleeping and waking lives. One important way serotonin affects sleep and bio time is through its relationship with the “sleep hormone” melatonin. Melatonin is made from serotonin in the presence of darkness. (Remember, melatonin production in the body is triggered by darkness and suppressed by exposure to natural and artificial light.) Healthy serotonin levels are essential for maintaining healthy melatonin levels—and both serotonin and melatonin are critical to sleep and a well-functioning bio clock. With its ability to increase serotonin, 5-HTP supports a neurochemical process that can enable high-quality sleep and keep the body’s bio clock in sync.
In humans, oxytocin is thought to be released during hugging, touching, and orgasm in both genders. In the brain, oxytocin is involved in social recognition and bonding, and may be involved in the formation of trust between people and generosity.123 Oxytocin first became of interest to researchers when they discovered that breastfeeding women are calmer when exercising and experiencing stress than moms who were bottle-feeding. It is just one part of the important, complex neurochemical system in our bodies that helps us adapt to emotional situations.
Skin damage and aging are induced to a large extent by free radicals from the sun and environmental pollutants and from oxidants produced during infection and inflammation. Lipid peroxidation of membranes and increased inflammatory substances, such as thromboxanes and leukotriens, add insult to injury. While skin damage accumulates with age, repair processes slow down. Thus, any boost by a molecule that would reduce free radicals and accelerate molecular events in healing has the potential to hasten skin repair. Tb4 has such healing qualities.
Pull 1ml of water into the syringe and inject it into the vial with powder. You should never shake the vial when mixing. You should not inject the water directly into the powder with force, but rather let it gently slide down the inside of the vial. If it bubbles up, you should put the vial in the refrigerator and leave it there for about 15-30 minutes. The bubbles will be gone by then. You should then gently rotate the vial between your fingers until all of the powder has dissolved (it takes about 3-4 minutes).

It was under development as drug candidate for female sexual dysfunction and erectile dysfunction but clinical development ceased by 2003, and as of 2018, no product containing melanotan II was marketed and all commercial development had ceased.[1] Unlicensed, untested, or fraudulent products sold as "melanotan II" are found on the Internet, and purported to be effective as "tanning drugs", though side effects such as uneven pigmentation, new nevi (moles), and darkening or enlargement of existing moles are common and have led to medical authorities discouraging use.[2][3]

The information provided on this site is for informational purposes only and is not intended as a substitute for advice from your physician or other health care professional or any information contained on or in any product label or packaging. You should not use the information on this site for diagnosis or treatment of any health problem or for prescription of any medication or other treatment. You should consult with a healthcare professional before starting any diet, exercise or supplementation program, before taking any medication, or if you have or suspect you might have a health problem. You should not stop taking any medication without first consulting your physician.
As shown in Figure 1, thymic hormones also modulate the production of hypothalamus pituitary hormones and neuropeptides. Initial experiments revealed that neonatal thymectomy promotes a decrease in the number of secretory granules in acidophic cells of the adenopituitary [44]. In the same vein, athymic nude mice display low levels of various pituitary hormones, such as PRL, GH, LH and FSH [45]. With regard to thymic peptides, thymosin beta-4, when perfused intraventricularly, stimulates LH and LHRH secretion [46]. Similar results were obtained with another thymic peptide, thymulin, in perfused or fragmented pituitary preparations [47]. The administration of thymopoietin (another chemically-defined thymic hormone) in children with Hodgkin’s disease increased GH and cortisol serum levels [48]. Moreover, thymopentin (the synthetic biologically active peptide of thymopoietin) enhances in vitro the production of ACTH and beta-endorphin [49]. In addition, thymulin exhibits an in vitro stimulatory effect on perfused rat pituitaries, enhancing PRL, GH, TSH and LH release [50]. Using short-term cultures of pituitary fragments, an increase in ACTH secretion occurs after in vitro thymulin addition, with no changes in GH levels and significant reductions in PRL release [47]. A further thymosin peptide was recently isolated with the task in stimulating IL-6 release from rat glioma cells [51]. By contrast, thymosin alpha-1 is apparently able to down regulate TSH, ACTH and PRL secretion in vivo with no modifications on GH levels [52]. These inhibitory effects seem to occur through hypothalamic pathways. Indeed, the production of the corresponding releasing hormones by hypothalamic neurones decreased after in vitro addition of thymosin alpha-1 in medial basal hypothalamic fragments [52].
On a personal note, 5-HTP is actually one of the 1st nootropics I ever used. When I was a teenager and would go to raves me and my friends would use 5-HTP the next day because ecstasy (MDMA) diminishes the serotonin levels. Anyone with much experience with ecstasy knows that the day(s) after can be pretty hellish because the drug so depletes your feel good neurotransmitters, 5-HTP is sort of a Biohack for this.
Supplements haven't been tested for safety and due to the fact that dietary supplements are largely unregulated, the content of some products may differ from what is specified on the product label. Also keep in mind that the safety of supplements in pregnant women, nursing mothers, children, and those with medical conditions or who are taking medications has not been established. You can get tips on using supplements, but if you're considering the use of 5-HTP supplements, talk with your primary care provider first. Self-treating a condition and avoiding or delaying standard care may have serious consequences.
Cells were incubated with 200 μM H2O2 for indicated times (A). Cells were pretreated with indicated concentrations of Tβ4 peptide (0.1–5 μg/mL) for 2 hours and then incubated with 200 μM H2O2 for 60 minutes (B). Data were representative of three independent experiments. The bar graph shows the fold increase in protein expression compared with control cells * Statistically significant differences compared with the control, p<0.05. # Statistically significant difference compared with the H2O2—treated group.

TB-500 was identified as a gene that was up-regulated four-to-six fold during early blood vessel formation and found to promote the growth of new blood cells from the existing vessels. This peptide is present in wound fluid and when administered subcutaneously, it promotes wound healing, muscle building and speeds up recovery time of muscles fibres and their cells. An additional key factor of TB-500 is that it promotes cell migration through a specific interaction with actin in the cell cytoskeleton. It has been demonstrated that a central small amino acid long-actin binding domain has both blood cell reproduction and wound healing characteristics. These characteristics are uncovered by accelerating the migration of endothelial cells and keratinocytes. It also increases the production of extracellular matrix-degrading enzymes.

Work with cell cultures and experiments with animals have shown that administration of thymosin β4 can promote migration of cells, formation of blood vessels, maturation of stem cells, survival of various cell types and lowering of the production of pro-inflammatory cytokines. These multiple properties have provided the impetus for a worldwide series of on-going clinical trials of potential effectiveness of thymosin β4 in promoting repair of wounds in skin, cornea and heart.[17]
These proteins, which typically contain 2-4 repeats of the β-thymosin sequence, are found in all phyla of the animal kingdom, with the probable exception of sponges[21] The sole mammalian example, a dimer in mice, is synthesised by transcriptional read-through between two copies of the mouse β15 gene, each of which is also transcribed separately.[22] A uniquely multiple example is the protein thypedin of Hydra which has 27 repeats of a β-thymosin sequence.[23]
5-HTP is decarboxylated to serotonin (5-hydroxytryptamine or 5-HT) by the enzyme aromatic-L-amino-acid decarboxylase with the help of vitamin B6.[40] This reaction occurs both in nervous tissue and in the liver.[41] 5-HTP crosses the blood–brain barrier,[42] while 5-HT does not. Excess 5-HTP, especially when administered with vitamin B6, is thought to be metabolized and excreted.[43][44]
×