Tb4 has other effects that are needed in healing and repair of damaged tissue. It is a chemo-attractant for cells, stimulates new blood vessel growth (angiogenesis), downregulates cytokines and reduces inflammation, thus protecting newly formed tissue from damaging inflammatory events. Tb4 has been shown to reduce free radical levels (with similar efficiency as superoxide dismutase), decrease lipid peroxidation, inhibit interleukin 1 and other cytokines, and decrease inflammatory thromboxane (TxB2) and prostaglandin (PGF2 alpha).
In 19 obese females given either placebo or 8mg/kg (weight not actually given, only BMI between 30-40 for women) daily for 5 weeks without any concurrent dietary recommendations, 5-HTP treatment was associated with a decrease in appetite and food intake (resulting in weight loss) without significantly affecting mood state.[9] This study noted that food intake was reduced from an average of 2,903kcal to 1,819kcal (62% of baseline) while placebo only reduced calories to 80%, and the 0.5kg weight loss in placebo was outperformed by a near 1.5kg loss in 5-HTP. These weight loss effects have been noted with 750mg 5-HTP over 2 weeks in overweight diabetics[10] and over 12 weeks in obese persons given 900mg 5-HTP daily (58% of baseline intake); this latter study had a 6 week trial without a diet (in which significant weight loss was only noted at week 6) followed up by coadministration with a diet where weight loss proceeded to reach an additional 3.3kg over the subsequent 6 weeks;[11] this latter study is duplicated in Medline.[12]
Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it.
Interestingly, there are numerous differences in the biology of teleosts and mammals, as well as specific differences in cardiomyocyte cellular structure and anatomy, all of which might contribute to regenerative variability. Unlike mammals, zebrafish can grow throughout most of adulthood, a phenomenon called “indeterminate growth” (Jordan, 1905). In fact, their growth can be affected markedly by changes in nutrition and population density (Goldsmith et al., 2006). It is thus possible that the capacity to replace cardiac tissue rapidly in teleosts has been retained in evolution as a function of the need for robust animal and cardiac growth. Indeed, a recent study has found that experimentally-induced adult cardiac growth in zebrafish is hyperplastic, and appears to rely on the same signals present or required during cardiac regeneration (Wills et al., 2008).
Adam Guastella, a clinical psychologist at University of Sydney’s Brain and Mind Research Institute, and a pioneer in studies of how oxytocin can help people with autism, thinks the hormone can also help people in couple therapy by facilitating empathic communication. His research has shown that people who get oxytocin are more focused on positive emotion: they remember happy faces better than angry and neutral ones. Research by others has shown that oxytocin increases trust, generosity and our ability to identify emotion in facial expressions. It is perhaps by these mechanisms that the hormone improves communication.

Conclusions:  Melanotan not a treatment or cure for anything.  Nor should it be considered a preventative treatment for skin cancer.  Despite this tanning peptide being known to protect the skin through the natural tanning process, it is not in and itself a guaranteed full proof UV shield.  However, it is a great way for those who don't tan easily to get sun-kissed all year long with minimal exposure to the sun.

To determine the effects of Tβ4 peptide and H2O2 on cytotoxicity, its cell viability was evaluated. A 48-h exposure to 0.1–5 μg/mL Tβ4 peptide did not affect H2O2-mediated cell viabilities (Fig 2A). In order to examine whether Tβ4 peptide suppressed ROS-induced inflammatory mediators, the ability of Tβ4 peptide on production of NO and PGE2, and expressions of COX-2 and iNOS were measured by RT-PCR, Western blot, and ELISA. Pretreatment with Tβ4 peptide dose-dependently inhibited H2O2-induced mRNA and protein expressions of COX-2 and iNOS, and NO and PGE2 production (Fig 2B–2E).
The main functionality of TB500 hinges on the ability to upregulate cell building proteins such as actin, which is a protein that forms (together with myosin) the contractile filaments of muscle cells, and is also involved in motion and metabolism in many other types of cells.. Upregulation of actin allows TB500 to promote healing, cell growth, cell migration and cell proliferation. This not only helps build new blood vessel pathways but also upregulates the type of “good” inflammation that is directly correlated with faster wound healing.

In a study that hasn’t been published yet, Feldman found that oxytocin receptor genes are also linked to empathy in couples. She looked at variants in the gene that have been linked with an increased risk for autism, a disorder that is marked by major social communication deficits. She found that the more of these “risk variants” a person had, the less empathy they showed toward their partner when that partner shared a distressing experience.

She recruited 31 men* and asked them to sniff either an oxytocin nasal spray or another spray with the same ingredients minus oxytocin – a placebo. A few weeks later, the sprays were swapped so that the men who took oxytocin now took the placebo, and vice versa. At the time, neither the scientists nor the volunteers knew which was which – that was only revealed after the experiment was over.

TBI patients frequently suffer from long-term deficits in cognitive and motor performance. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI.11 Some features of cognitive and motor function in humans have been successfully demonstrated in experimental brain trauma models.28-30 The controlled cortical impact (CCI) model is one of the most widely used TBI models. The CCI-TBI model has many clinically relevant features in that CCI causes not only cortical damage but also selective neuronal death in the hippocampus in rodents, leading to sensorimotor dysfunction and spatial learning and memory deficits, respectively.18,31-33
Surgery: 5-HTP can affect a brain chemical called serotonin. Some drugs administered during surgery can also affect serotonin. Taking 5-HTP before surgery might cause too much serotonin in the brain and can result in serious side effects including heart problems, shivering, and anxiety. Tell patients to stop taking 5-HTP at least 2 weeks before surgery.

Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it.
Myocardial infarction and heart failure are severe causes for death in humans. Extracellular nucleotides (ATP and ADP) released at the site of myocardial damage induce thrombosis, apoptosis and necrosis. ENTPD1 (ectonucleoside triphosphate diphosphohydrolase 1, CD39) rapidly hydrolyzes ATP and ADP to AMP. An in vivo myocardial ischemia/reperfusion injury test in transgenic mice expressing human CD39 resulted in a decrease of the infarct size. The same transgene including the human CD39 cDNA driven by the murine MHC class I gene H-2Kb promoter was used for the generation of transgenic pigs via SCNT. Expression of human CD39 was detected on circulating blood cells and in myocardial tissue of the transgenic animals. After in vivo induction of myocardial ischemia/reperfusion injury, a reduction of the myocardial injury analogous to the results in the transgenic mice was found (Wheeler et al., 2012).
Thymosin beta 4 accelerated skin wound healing in a rat model of a full thickness wound where the epithelial layer was destroyed. When Tb4 was applied topically to the wound or injected into the animal, epithelial layer restoration in the wound was increased 42% by day four and 61% by day seven, after treatment, compared to untreated. Furthermore, Tb4 stimulated collagen deposition in the wound and angiogenesis. Tb4 accelerated keratinocyte migration, resulting in the wound contracting by more than 11%, compared to untreated wounds, to close the skin gap in the wound. An analysis of skin sections (histological observations) showed that the Tb4 treated wounds healed faster than the untreated. Proof of accelerated cell migration was also seen in vitro, where Tb4 increased keratinocyte migration two to three fold, within four to five hours after treatment, compared to untreated keratinocytes.
100mg works well for mood and getting to sleep. Put 100mg in my Pre Workout Powder (Non Stimulant). Don't know if anyone else has tried this or if it was just a coincidence but it made the weights feel considerably lighter and I was able to use more weight than I have in a decade. I will definitely be trying that again. I also cut the bag open and emptied it into an old pill bottle through a small funnel. No wastage. Easy.
Thymosin β4 (TMSB4X, Tβ4) is the most abundant G-actin binding peptide of the cytosol and is a potent proangiogenic factor. The role of myocardin-related transcription factors (MRTF) and serum response factor (SRF) for this function was examined in experimentally induced prolonged ischemic myocardium areas of transgenic pigs ubiquitously and constitutively overexpressing Tβ4 driven by the cytomegalovirus promoter. Upon induction of a reversible loss of cardiomyocyte function which is amenable to therapeutic neovascularization, transgenic pigs did not experience a significant loss of perfusion nor myocardial function at rest or under rapid pacing. Functional vascular regeneration by induced capillary growth and maturation was found in the transgenic pigs (Hinkel et al., 2014).
5-HTP appears to reduce food intake secondary to increasing satiety, although most studies are currently conducted in women (in regards to 5-HTP being related to serotonin, this may be relevant; see our creatine page and the Depression section for more information). At least one study that was mixed gender supports the notion it benefits both genders, however
With the TB-500 it seems that pain was reduced even more in my shoulder and it appears that I recovered much faster from my workouts. I took the TB-500 on rest days. I have two more 1mg doses of TB-500 and I am going to site inject intramuscularly to the shoulder to see what happens. Then I will stop taking both for a month to see how things work out. Hopefully I won’t need them again.

Melanotan II is a synthetic analogue of the α-melanocyte stimulating hormone (α-MSH). α-MSH is a melanocortin I receptor agonist which has a role in human pigmentation by stimulating production of eumelanin. Melanotan II was originally developed as a treatment for sexual dysfunction. However, the proposal was abandoned when development of the metabolite bremelanotide was established.
In years past, oxytocin had the reputation of being an "uncomplicated" hormone, with only a few well-defined activities related to birth and lactation. As has been the case with so many hormones, further research has demonstrated many subtle but profound influences of this little peptide, particularly in regards to its effects in the brain. Oxytocin has been implicated in setting a number of social behaviors in species ranging from mice to humans. For example, secretion or administration of oxytocin in humans appears to enhance trust and cooperation within socially-close groups, while promoting defensive aggression toward unrelated, competing groups.
^ Jump up to: a b Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, Dziobek I, Gallinat J, Wagner M, Maier W, Kendrick KM (April 2010). "Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans". The Journal of Neuroscience. 30 (14): 4999–5007. doi:10.1523/JNEUROSCI.5538-09.2010. PMID 20371820.
Doctors have noticed cancer patients have a higher amount of Thymosin in the affected tissues than other people. So in the early stages of research, doctors assumed that this meant Thymosin may cause cancer. After more research was conducted, it was discovered that the main action of Thymosin Beta 4 was to produce new white blood cells – so its presence in the body in the areas affected by cancer was likely not a cause of the cancer, but instead, a matter of “showing up” in the body where cancer lived to help the body mount an immune system response.

20 patients (nine from the 5-HTP group and 11 from the Placebo group) completed the study. Brain tryptophan availability in diabetic patients was significantly reduced when compared to a group of healthy controls. Patients receiving 5-HTP significantly decreased their daily energy intake, by reducing carbohydrate and fat intake, and reduced their body weight.”

Thymosin beta-4 (Tβ4) is a water-soluble, 43-amino acid, and 4.9 kDa protein that was originally isolated from bovine thymus [6]. Since Tβ4 is the major actin-sequestering molecule in eukaryotic cells and is found in all cells [7], Tβ4 has multiple diverse cellular functions, including tissue development, migration, angiogenesis, and wound healing [7]. We previously reported that Tβ4-overexpressing transgenic mice, using a construct on the skin-specific keratin-5 promoter, have abnormal tooth development and enhanced stimulation of hair growth [8]. Moreover, exogenous Tβ4 has anti-inflammatory effects in the bleomycin-induced mouse model of lung fibrosis [9], tooth extraction sockets in rats [10], rat model of myocardial ischemia [11], corneal wound healing [12], wound healing of rat palatal mucosa [13], in vitro model of cultured human gingival fibroblasts [14], and cardiac fibroblasts [15]. However, the effects of Tβ4 over expression or inhibition on differentiation are controversial. Exogenous β4 peptide inhibited osteogenic differentiation but facilitated adipogenic differentiation in human bone marrow-derived-mesenchymal stem cells (MSCs) [16]. In contrast, Tβ4 inhibition by Tβ4 siRNA attenuated odontoblastic differentiation in the odontoblast-like cells, MDPC-23 [17]. Moreover, we recently demonstrated that odontoblastic differentiation was enhanced by activation of Tβ4 by Tβ4 peptide but was decreased by Tβ4 siRNA in human dental pulp cells (HDPCs) [18]. However, the effects of Tβ4 on osteoclastic differentiation have not been reported.
Oxytocin (Oxt; /ˌɒksɪˈtoʊsɪn/) is a peptide hormone and neuropeptide. Oxytocin is normally produced by the paraventricular nucleus of the hypothalamus and released by the posterior pituitary.[3] It plays a role in social bonding, sexual reproduction, and during and after childbirth.[4] Oxytocin is released into the bloodstream as a hormone in response to stretching of the cervix and uterus during labor and with stimulation of the nipples from breastfeeding.[5] This helps with birth, bonding with the baby, and milk production.[5][6] Oxytocin was discovered by Henry Dale in 1906.[7] Its molecular structure was determined in 1952.[8] Oxytocin is also used as a medication to facilitate childbirth.[9][10][11]
“The study was double-blinded and was for two consecutive 6-wk periods. No diet was prescribed during the first period, a 5040-kJ/d diet was recommended for the second. Significant weight loss was observed in 5-HTP-treated patients during both periods. A reduction in carbohydrate intake and a consistent presence of early satiety were also found. These findings together with the good tolerance observed suggest that 5-HTP may be safely used to treat obesity.”
The structure of oxytocin is very similar to that of vasopressin. Both are nonapeptides with a single disulfide bridge, differing only by two substitutions in the amino acid sequence (differences from oxytocin bolded for clarity): Cys – Tyr – Phe – Gln – Asn – Cys – Pro – Arg – Gly – NH2.[116] A table showing the sequences of members of the vasopressin/oxytocin superfamily and the species expressing them is present in the vasopressin article. Oxytocin and vasopressin were isolated and their total synthesis reported in 1954,[122] work for which Vincent du Vigneaud was awarded the 1955 Nobel Prize in Chemistry with the citation: "for his work on biochemically important sulphur compounds, especially for the first synthesis of a polypeptide hormone."[123]
A study published last year in Biological Psychiatry was the first to assess whether people with variations in their oxytocin-receptor gene have a harder time maintaining romantic relationships than those who don’t. Hasse Walum, a graduate student at Karolinska Institute in Stockholm, and his colleagues took advantage of Swedish twin studies that included thousands of participants, their genetic information and their answers to questions about how affectionate they were with their romantic partners. They found that women with a specific variation weren’t as close to their partners as women without it: they kissed their partners less and didn’t desire physical proximity as often. These women were also more likely to report having had a marital crisis. Although researchers don’t know exactly how this variation affects the oxytocin system, it may result in a lower number of oxytocin receptors in the brain. People with fewer receptors would be less sensitive to the hormone’s effects.
This article is authored by a PhD Candidate and her supervisory team at University of Queensland, and reflects the interests of the student’s doctoral project in undertaking the nation’s first qualitative study into experiences of Melanotan use among the general population. Dubbed ‘Project Melanotan’, the investigation aims to directly engage with ‘melanotanners’ in a non-judgemental environment, in an effort to both critically evaluate as well as understand lived experiences of melanotaning as they relate to conceptually relevant notions of risk, technology and the body.
As shown in Figure 1, thymic hormones also modulate the production of hypothalamus pituitary hormones and neuropeptides. Initial experiments revealed that neonatal thymectomy promotes a decrease in the number of secretory granules in acidophic cells of the adenopituitary [44]. In the same vein, athymic nude mice display low levels of various pituitary hormones, such as PRL, GH, LH and FSH [45]. With regard to thymic peptides, thymosin beta-4, when perfused intraventricularly, stimulates LH and LHRH secretion [46]. Similar results were obtained with another thymic peptide, thymulin, in perfused or fragmented pituitary preparations [47]. The administration of thymopoietin (another chemically-defined thymic hormone) in children with Hodgkin’s disease increased GH and cortisol serum levels [48]. Moreover, thymopentin (the synthetic biologically active peptide of thymopoietin) enhances in vitro the production of ACTH and beta-endorphin [49]. In addition, thymulin exhibits an in vitro stimulatory effect on perfused rat pituitaries, enhancing PRL, GH, TSH and LH release [50]. Using short-term cultures of pituitary fragments, an increase in ACTH secretion occurs after in vitro thymulin addition, with no changes in GH levels and significant reductions in PRL release [47]. A further thymosin peptide was recently isolated with the task in stimulating IL-6 release from rat glioma cells [51]. By contrast, thymosin alpha-1 is apparently able to down regulate TSH, ACTH and PRL secretion in vivo with no modifications on GH levels [52]. These inhibitory effects seem to occur through hypothalamic pathways. Indeed, the production of the corresponding releasing hormones by hypothalamic neurones decreased after in vitro addition of thymosin alpha-1 in medial basal hypothalamic fragments [52].
Some differences in cardiac anatomy exist between mammals and teleosts. The zebrafish ventricle has a thin wall of compact muscle surrounding a much larger compartment of myofibers organized into elaborate trabeculae. It is intriguing that this structure is very similar to that of the embryonic mammalian ventricle prior to its septation and fusion of trabeculer myofibers into a thick, vascularized wall (Sedmera et al., 2000). That the mammalian heart has a more differentiated, contractile anatomy is apparent not only in gross cardiac structure, but also in cellular features. Teleost cardiomyocytes are 2–10 times smaller, mononucleated, have a greatly-reduced sarcoplasmic reticulum and lack the T-tubule system found in skeletal muscle and mammalian cardiac muscle (Farrell, 1992). One might speculate that the teleost heart is better designed for growth and regeneration, while the mammalian heart is better designed for sheer contractile force. Nevertheless, none of the mentioned differences between lower and higher vertebrate hearts preclude the idea that the mammalian heart could be stimulated to regenerate, especially if that regeneration is due to mobilization of a progenitor cell population.
Its unique potential as a healing substance lies in that it interacts with cellular actin and regulates its activity. Tb4 prevents actin from assembling (polymerizing) to form filaments but supplies a pool of actin monomers (unpolymerized actin) when a cell needs filaments for its activity. A cell cannot divide if actin is polymerized. Tb4 therefore serves in vivo to maintain a reservoir of unpolymerized actin that will be put to use when cells divide, move and differentiate.

Children: 5-HTP is POSSIBLY SAFE when taken by mouth appropriately. Doses of up to 5 mg/kg daily have been used safely for up to 3 years in infants and children up to 12 years-old. As with adults, there is also concern about the potential for eosinophilia-myalgia syndrome (EMS) in children, a serious condition involving extreme muscle tenderness (myalgia) and blood abnormalities (eosinophilia).