Although Tβ4 contains only 43 amino acids, it appears to have a wide range of regenerative activities and specific sites on the molecule have been shown to mediate these effects (Goldstein & Kleinman, 2015; Sosne, Qiu, Goldstein, & Wheater, 2010). Both chemically synthesized and recombinant forms have shown efficacy for dermal healing in preclinical models and in human patients (Ehrlich & Hazard, 2012; Kim & Kwon, 2014, 2015; Malinda et al., 1999; Philp, Badamchian, et al., 2003; Philp & Kleinman, 2010; Philp et al., 2006; Ti et al., 2015; Treadwell et al., 2012). A dimeric form has been found to accelerate the rate of dermal healing in an animal model more rapidly than that of the parent molecule (Xu et al., 2013). Tβ4 has also shown repair and regenerative activity in a number of other injury models, such as traumatic brain injury, spinal cord injury, stroke, a model of multiple sclerosis, ischemic limbs, and cardiac damage due to ischemia (Bock-Marquette, Saxena, White, Dimaio, & Srivastava, 2004; Cheng, Kuang, Zhang, Ju, & Wang, 2014; Dube, Bollini, Smart, & Riley, 2012; Morris, Chopp, Zhang, Lu, & Zhang, 2010; Morris et al., 2014; Philp & Kleinman, 2010; Postrach et al., 2014; Smart et al., 2007; Sopko et al., 2011; Ti et al., 2015, Wang et al., 2012; Wei, Kim, Li, Wu, & Gupta, 2014; Xiong, Mahmood, Meng, et al., 2011; Zhang, Zhang, Morris, et al., 2009; Zuo et al., 2013). The processes and pathways for Tβ4-mediated repair are similar in these various tissues and support the observed promotion of dermal healing.
Angiogenesis is an essential step in the repair process that occurs after injury. In this study, we investigated whether the angiogenic thymic peptide thymosin beta4 (Tbeta4) enhanced wound healing in a rat full thickness wound model. Addition of Tbeta4 topically or intraperitoneally increased reepithelialization by 42% over saline controls at 4 d and by as much as 61% at 7 d post-wounding. Treated wounds also contracted at least 11% more than controls by day 7. Increased collagen deposition and angiogenesis were observed in the treated wounds. We also found that Tbeta4 stimulated keratinocyte migration in the Boyden chamber assay. After 4-5 h, migration was stimulated 2-3-fold over migration with medium alone when as little as 10 pg of Tbeta4 was added to the assay. These results suggest that Tbeta4 is a potent wound healing factor with multiple activities that may be useful in the clinic.
Hi Ben, I have been using TB-500 for minor injury repair assistance for more than 2 years. I have found it to be extremely effective for minor strains to calves, hamstring, shoulder etc. Luckily I have not had to try it for any major injuries. When I first used it I was blown away by how effectively it worked – even to the point that I began to doubt the seriousness of the original injury. When injured I dose at 5mg per week for four weeks then take at least four weeks break. The only side affect I have noticed is a little light headed feeling which passes pretty quickly. I am in my late 40’s and I train hard. TB-500 allows me to train through minor injuries which is great. Love your work
Friedman, J., Roze, E., Abdenur, J. E., Chang, R., Gasperini, S., Saletti, V., Wali, G. M., Eiroa, H., Neville, B., Felice, A., Parascandalo, R., Zafeiriou, D. I., Arrabal-Fernandez, L., Dill, P., Eichler, F. S., Echenne, B., Gutierrez-Solana, L. G., Hoffmann, G. F., Hyland, K., Kusmierska, K., Tijssen, M. A., Lutz, T., Mazzuca, M., Penzien, J., Poll-The BT, Sykut-Cegielska, J., Szymanska, K., Thony, B., and Blau, N. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol. 2012;71:520-530. View abstract.
For those deficient in tryptophan, supplemental tryptophan and 5-HTP could be somewhat effective,[17] although a meta-analysis found barely statistically significant results (Odds Ratio of 1.3-13.2) from a statistically subpar collection of studies, and based on the inclusion criteria it set it had to expand its analysis to both 5-HTP and Tryptophan to get two studies to assess.[23]
To determine whether MAPK and NF-κB signaling pathways were involved in the anti-osteoclastogenic function of Tβ4, the effect of Tβ4 peptide on the phosphorylation levels of ERK, JNK, and p38 MAPK(s) as well as the nuclear translocation of NF-κB p65 in RANKL-stimulated BMMs were examined. As shown in Fig 8B, Tβ4 peptide inhibited the RANKL-induced phosphorylation of p38, ERK, and JNK and nuclear translocation of NF-κB p65.
Oxytocin is known to be metabolized by the oxytocinase, leucyl/cystinyl aminopeptidase.[25][26] Other oxytocinases are also known to exist.[25][27] Amastatin, bestatin (ubenimex), leupeptin, and puromycin have been found to inhibit the enzymatic degradation of oxytocin, though they also inhibit the degradation of various other peptides, such as vasopressin, met-enkephalin, and dynorphin A.[27][28][29][30]
So far, few studies have definitively linked autism to problems in oxytocin signalling. Some of the clearest evidence emerged in February, from a team led by neurogeneticist Daniel Geschwind of the University of California, Los Angeles. The group showed that mice that lacked a working copy of the Cntnap2 gene — which has been implicated in a small subset of human autism cases — had fewer oxytocin-containing neurons in the hypothalamus and socialized less with other mice than did control mice15. After receiving doses of oxytocin every day for two weeks, the mice behaved normally again. “Until this, there was no evidence that there was a subtype of autism that had to do with oxytocin deficits,” Geschwind says.
Maintenance doses are taken once the desired pigmentation has been reached and requires much less frequent dosing. Unfortunately, this is where too many variables come into play to give exact instructions. Skin type, bodyweight, metabolism regulating speed of skin fading, uv ray exposure, preferred tan level – all that makes impossible to give correct advice on maintenance dose. Everyone will find their own perfect dose and dosing frequency through some trial and error. To not leave you completely disinformed on this subject here is example of loading and maintenance which can be used as starting point where to adjust from:

Growth factors play an important role is enhancing structural repair of chronic wounds (Robson, 1997). KGF-2 (Robson et al., 2001), TGF-β (Robson et al., 1995), PDGF-BB (Mustoe et al., 1994; Kiritsy et al., 1995; Smiell et al., 1999), β-NGF (Muangman et al., 2004) have been shown to enhance re-epithelialization (Greenalgh, 1996 for review). The KGF-1 gene has been shown to improve cutaneous wound healing in a septic rat model when delivered in a plasmid (Lin et al., 2006). The PDGF-B gene carried in a plasmid mixed with a bovine collagen gel was reported to accelerate closure of patient diabetic ulcers (Mulder et al., 2009; Blume et al., 2011). KGF-2, PDGF-BB and FGF-L are commercially available as RepiferminTM, RegranexTM, and Trafermin to treat human chronic wounds. Data for the effects of PDGF-BB on back wounds of diabetic mice and for the effects of KGF-2 on chronic venous ulcers in patients is tabulated in Tables 10.3 and 10.4. Thymosin β4 accelerated keratinocyte migration in the wounds of old diabetic mice (Philp et al., 2003).
Humans are social animals. Our individual prospects depend to a significant degree on the prospects of the group(s) to which we belong, and how well we get along with the group(s). Survival means being acutely sensitive to who is on our side and who is not. So it isn’t surprising that trust matters so much to how we go about protecting ourselves. And it isn’t surprising to find the instinct for trust rooted deep in the brain.
TB-500 is a synthetic version of the naturally occurring peptide present in virtually all human and animal cells, Thymosin Beta-4. This potent peptide is a member of a ubiquitous family of 16 related molecules with a high conservation of sequence and localization in most tissues and circulating cells in the body. TB-500 not only binds to actin, but also blocks actin polymerization and is the actin-sequestering molecule in eukaryotic cells.
Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity worldwide. No effective pharmacological treatments are available for TBI because all Phase II/III TBI clinical trials have failed. This highlights a compelling need to develop effective treatments for TBI. Endogenous neurorestoration occurs in the brain after TBI, including angiogenesis, neurogenesis, synaptogenesis, oligodendrogenesis and axonal remodeling, which may be associated with spontaneous functional recovery after TBI. However, the endogenous neurorestoration following TBI is limited. Treatments amplifying these neurorestorative processes may promote functional recovery after TBI. Thymosin beta4 (Tβ4) is the major G-actin-sequestering molecule in eukaryotic cells. In addition, Tβ4 has other properties including anti-apoptosis and anti-inflammation, promotion of angiogenesis, wound healing, stem/progenitor cell differentiation, and cell migration and survival, which provide the scientific foundation for the corneal, dermal, and cardiac wound repair multicenter clinical trials. Here, we describe Tβ4 as a neuroprotective and neurorestorative candidate for treatment of TBI.
Disclaimer: Thymosin Beta 4 is a peptide that should only be purchased for use in experimentation and research. It should not be purchased for human use or any other purpose than for research. It is advised that once purchased, the peptide is used within experimental circumstances that are under strict lab regulations. It is recommended that researchers use protective gear in order to prevent contact with the substance. However, if exposure is made with the peptide, it is very important to cleanse the area immediately to prevent harm.
Conclusions:  Melanotan not a treatment or cure for anything.  Nor should it be considered a preventative treatment for skin cancer.  Despite this tanning peptide being known to protect the skin through the natural tanning process, it is not in and itself a guaranteed full proof UV shield.  However, it is a great way for those who don't tan easily to get sun-kissed all year long with minimal exposure to the sun.
5-HTP (5-Hydroxytryptophan) is a chemical by-product of the protein building block L-tryptophan. It is also produced commercially from the seeds of an African plant known as Griffonia simplicifolia 5-HTP is used for sleep disorders such as insomnia, depression, anxiety, migraine and tension-type headaches, fibromyalgia, obesity, premenstrual syndrome (PMS), premenstrual dysphoric disorder (PMDD), attention deficit-hyperactivity disorder (ADHD), seizure disorder, and Parkinson's disease..
×