Oxytocin is known as the hormone that promotes feelings of love, bonding and well-being. It's even being tested as an anti-anxiety drug. But new research shows oxytocin also can cause emotional pain. Oxytocin appears to be the reason stressful social situations, perhaps being bullied at school or tormented by a boss, reverberate long past the event and can trigger fear and anxiety in the future. That's because the hormone actually strengthens social memory in the brain.

Like I said, it’s amazing stuff. And it shouldn’t come as a surprise that it affects that amazing part of your brain so intimately involved in keeping you safe…the amygdala. Remember, trust has a lot to do with survival among social animals who depend on each other for safety and protection. Show someone an untrustworthy face, and the amygdala is one of two areas that become more active than anywhere else in the brain.7 It is apparently programmed for reading trust just as it is for snakes or spiders.
Despite this, Tβ4’s place on the banned-substances list is warranted. It reflects the possibility that the effects of the supplement may manifest as a tangible improvement in athletes. However, any time a journalist flippantly declares it “heals damaged tissue and speeds recovery”, it should be noted that such claims are a harmful distortion of the facts.

In 2015 I found my self bed ridden for 8 weeks with an issue all the doctors I had been to we’re unable to diagnose. I discovered, after much research, that what I was suffering from was damaged facia in my left and right gluteus muscles, which left me unable to do anything. I was in excruciating pain and couldn’t do anything except lay in bed on my back. Then my husband found TB 500. Initially I was against using it but after deteriorating to the point of being bed ridden I broke down and ordered some. As soon as I received it my husband injected me in the gluteus muscle. Within 30 minutes I started getting relief from the TB-500, within 8 weeks I was out of bed and the pain was gone! It healed the damaged fascia covering the gluteus. If I had not done this I don’t know where I would be today. For me, TB-500 was a life saver and if I had to I would use it again. I have suffered no side affects then or now.
Letdown reflex. In lactating (breastfeeding) mothers, oxytocin acts at the mammary glands, causing milk to be ‘let down’ into a collecting chamber, from where it can be extracted by compressing the areola and sucking at the nipple. Sucking by the infant at the nipple is relayed by spinal nerves to the hypothalamus. The stimulation causes neurons that make oxytocin to fire action potentials in intermittent bursts; these bursts result in the secretion of pulses of oxytocin from the neurosecretory nerve terminals of the pituitary gland.
Both sexes secrete oxytocin - what about its role in males? Males synthesize oxytocin in the same regions of the hypothalamus as in females, and also within the testes and perhaps other reproductive tissues. Pulses of oxytocin can be detected during ejaculation. Current evidence suggests that oxytocin is involved in facilitating sperm transport within the male reproductive system and perhaps also in the female, due to its presence in seminal fluid. It may also have effects on some aspects of male sexual behavior.
"There was no substance labelled unfit for human use so anyone that tries to bandy that comment around apart from the fact the comment is totally false, we are now starting to accrue our legal case against people that have suggested as such. Under no circumstances was anything ever injected or given to a player which was unfit for human consumption," Dank told ABC News Radio on Sunday.
When looking at studies that investigate carbohydrates per se, one study in overweight women given 8mg/kg 5-HTP for 5 weeks noted that while placebo did not reduce carbohydrate ingested (calories were reduced in placebo, but carbohdyrate remained at 38% of voluntary calorie intake) that 5-HTP also retained 38% of intake as carbohydrates despite consuming less calories and carbohydrates in total.[9] A decrease in both carbohydrate and dietary fat has been noted with 750mg 5-HTP daily for 2 weeks in diabetics (with no dietary guidelines given), but appeared to be reduced to a similar degree as calories overall.[10] Only one study supports these anecdotes, where the reduction in calories seemed to be acounted mostly for by carbohydrates (75% of observed reduction) and then fats (25%).[10]
Injection is the most effective way to administrate the peptide and results are seen the fastest and best. The nasal spray method is effective up to 30 – 40% because the nasal passages have poor absorption rate, you have to apply the nasal spray at least two to three times more than the injection. The injectable product of the Melanotan is very superior as compared to the nasal version. The nasal versions generally take four to five weeks for displaying the results appose to 10 days with the injection.
It’s a compound that the body needs in order to make serotonin, which is our main “happiness hormone.” Per Dr. Oz, 5-HTP floods the brain with serotonin and helps minimize stress, sadness, anger, and anxiety. “5-HTP targets specific emotions that drive us to overeat,” Dr. Bhatia explains. And as she already mentioned, 5-HTP also reduces physical hunger pangs and emotional cravings. Ideally, the body makes its own 5-HTP from the amino acid tryptophan, found in foods like turkey and bananas. (Why not just eat more turkey or take a tryptophan supplement? If you struggle with mood or weight, it can be a sign that your body has trouble converting tryptophan to 5-HTP.) Besides making it yourself, the only other way to get 5-HTP is from a supplement. One we like is the BRI 5-HTP Supplement ($16 for 120 capules, Amazon).
FGF-2 and VEGF enhance angiogenesis in chronic wounds (Greenalgh, 1996; Kirchner et al., 2003). Thymosin β-4 increases angiogenesis, consistent with its ability to induce epicardial cells to differentiate into endothelial and smooth muscle cells of coronary vessels (Chapter 7). L-arginine enhances angiogenesis in chronic wounds by enhancing the production of endothelial nitric oxide and improving blood flow (Shi et al., 2003). L-arginine also plays a role in the formation of proline, which is essential for the structure of collagen molecules. ChrysalinTM, a synthetic peptide representing the portion of human thrombin that binds to the surface of endothelial cells, doubled the incidence of complete healing of diabetic foot ulcers in human patients (Fife et al., 2007). Another molecule used to treat peripheral artery disease, pentoxifylline, was reported to improve blood flow in chronic wounds by reducing blood viscosity (Falanga et al., 1999).

Oxytocin's story starts back in the early 1900s, when biochemists discovered that a substance from the posterior pituitary gland could promote labour contractions and lactation. When scientists later discovered the hormone responsible, they named it oxytocin after the Greek phrase meaning 'rapid birth'. Oxytocin is produced mainly by the brain's hypothalamus; in the 1970s, studies revealed that oxytocin-producing neurons send signals throughout the brain, suggesting that the hormone had a role in regulating behaviour.


Treatment with thymosin beta 4 (Tβ4) reduces infarct volume and preserves cardiac function in preclinical models of cardiac ischemic injury. These effects stem in part from decreased infarct size, but additional benefits are likely due to specific antifibrotic and proangiogenic activities. Injected or transgenic Tβ4 increase blood vessel growth in large and small animal models, consistent with Tβ4 converting hibernating myocardium to an actively contractile state following ischemia. Tβ4 and its degradation products have antifibrotic effects in in vitro assays and in animal models of fibrosis not related to cardiac injury. This large number of pleiotropic effects results from Tβ4’s many interactions with cellular signaling pathways, particularly indirect regulation of cellular motility and movement via the SRF–MRTF–G-actin transcriptional pathway. Variation in effects and effect sizes in animal models may potentially be due to variable distribution of Tβ4. Preclinical studies of PK/PD relationships and a reliable pharmacodynamic biomarker would facilitate clinical development of Tβ4.

A: 5-HTP stands for 5-hydroxytryptophan. 5-HTP is classified as a dietary supplement; it is made from the seeds of an African plant, Griffonia simplicfolia. 5-HTP is a metabolite (a metabolic by-product) of the amino acid tryptophan, and it is converted by the body into serotonin, which acts in the brain to sooth a person's mind and comfort one from stress and worry. People are using 5-HTP for a variety of conditions, including weight loss, depression, anxiety, PMS, fibromyalgia, eating disorders, obsessive-compulsive disorder (OCD), and headaches. 5-hydroxytryptophan has not been evaluated by the FDA for safety, effectiveness, or purity. One should follow the dosage recommendations on the particular packages of 5-HTP they purchase. According to one researcher, the suggested dosage range of 5-HTP is between 50 mg and 1,200 mg per day, with the usual range being 100 to 600mg. It is always a good idea to check with one


Ultimately, this lack of literature on the drug best serves to illustrate the recklessness of Stephen Dank in committing to something so experimental in nature. Perhaps he was privy to anecdotal evidence the rest of us weren’t. The drug has been used by amateur athletes and bodybuilders, and reportedly in the equine industry. Nevertheless, any benefits are unsubstantiated, which lends to an exasperation shared by supporters as to why Dank would risk so much for a substance that potentially offers no advantage at all. As a supporter, I would have much preferred a drug that allowed us to hit a target inside 50.
Wonderful column. My expertise is the psychology of risk perception, and I have done some reading on oxytocin and trust (not the kind you want to boost in a bar with Liquid Trust – you can the stuff with pheromones – to boost THAT kind of trust). It turns out there is a high concentration of oxytocin receptors on the amygdala, the area of the brain where fear starts. As oxytocin levels go up, the ability of the amygdala to be warry and more mistrustful goes down. I describe this in Ch. 3 of How Risky Is It, Really? Why Our Fears Don’t Always Match the Facts. A few graphs of which are below. I wonder whether the influence of oxytocin on the amygdala might be connected with the finding of the study you write about.
Silencing of the Tβ4 or Wnt5a gene was achieved by transfecting cells with small interfering RNA (siRNA). Cells were transfected with Tβ4 or Wnt5a siRNAs (30 nM) for 24 hours using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. Cells were transfected with Silencer negative control siRNA using the same protocol.
In a landmark 1979 study3, Cort Pedersen and Arthur Prange at the University of North Carolina in Chapel Hill showed that giving oxytocin to virgin rats could trigger maternal behaviours: the animals would build nests, lick or crouch over unfamiliar pups and even return lost pups to the nest. Researchers went on to show that oxytocin signalling in the brains of prairie voles (Microtus ochrogaster) helps the animals to form lifelong pair bonds4 — a rarity among mammals. In 2012, researchers even found a version of oxytocin in the tiny roundworm Caenorhabditis elegans, where it helps the animals find and recognize mates5.
Jump up ^ Wermter AK, Kamp-Becker I, Hesse P, Schulte-Körne G, Strauch K, Remschmidt H (March 2010). "Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level". American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. 153B (2): 629–39. doi:10.1002/ajmg.b.31032. PMID 19777562.
It turns out oxytocin is responsible for a lot more than just love. New science has found that this amazing molecule also influences how sociable each of us is, allowing us to 'tune in' to the social information around us, perceiving it in much higher resolution. Scientists are now applying this new knowledge in the lab, and as reporter Dr Graham Phillips finds out, they're discovering oxytocin's great potential to treat social disorders, like drug addiction and alcoholism.
In the male mammal, the small peptide hormone oxytocin is produced in similar quantities within the hypothalamo-pituitary magnocellular system as in the female, yet for the male little is known about the physiology associated with this hormone. The present review summarizes what is known about the function of oxytocin in the male mammal and tries to take account of both central and systemic effects, and those linked with a local production of oxytocin within the male reproductive organs. In several species a pulse of systemic oxytocin, presumably of hypothalamic origin, appears to be associated with ejaculation. The systemic hormone could act peripherally stimulating smooth muscle cells of the male reproductive tract, but could also reflect central effects in the brain modulating sexual behaviour. In addition to systemic oxytocin, the peptide is also made locally within the testis, and possibly also the epididymis and prostate. In the former tissue it appears to have an autocrine/paracrine role modulating steroid metabolism, but may in addition be involved in contractility of the seminiferous tubules. However, the latter function may involve the mediacy of Sertoli cells which under some circumstances can also exhibit the components of a local oxytocin system. In the prostate of the rat and the dog oxytocin is linked again to steroid metabolism and may also act as a growth regulator. Finally, oxytocin in seminal fluid is discussed and its possible role in respect to the fate of the semen following ejaculation.
The RANKL and OPG have been identified as a key regulatory component of alveolar bone loss associated with inflammatory periodontal disease [52]. Moreover, PDLCs were shown to express several osteoclastogenic cytokines, including both OPG and RANKL [30, 31]. Our data demonstrated that Tβ4 peptide abolished H2O2-induced RANKL expression and restored OPG expression. Osteoclasts, bone-resorptive multinucleated cells derived from hematopoietic stem cells, are associated with osteolytic diseases. Furthermore, NFATc1, a master modulator of osteoclastogenesis, regulates target genes, such as cathepsin K and calcitonin receptor or Calcr [53]. In our in vitro study using BMMs, Tβ4 peptide directly and indirectly inhibited RANKL-induced osteoclast differentiation and expression of osteoclast markers, such as cathepsin-K, calcitonin receptor or Calcr, NFATc1, and RANK in BMM cells. These results indicated that Tβ4 was a key therapeutic target in controlling inflammation-induced bone loss.

These proteins, which typically contain 2-4 repeats of the β-thymosin sequence, are found in all phyla of the animal kingdom, with the probable exception of sponges[21] The sole mammalian example, a dimer in mice, is synthesised by transcriptional read-through between two copies of the mouse β15 gene, each of which is also transcribed separately.[22] A uniquely multiple example is the protein thypedin of Hydra which has 27 repeats of a β-thymosin sequence.[23]
The promise of repairing sun parched aging skin is alluring, especially if damage control may be attained by applying a substance that is abundant in our body. Thymosin beta 4 (Tb4), a molecule that accelerates wound healing in animals and cultured cells, "may be valuable in repairing skin damage caused by sun or even by the wear and tear of aging?" This hopeful message of Tb4's potential to restore damaged human skin was voiced at the 5th International Symposium on Aging Skin, in California (May 2001), by Dr. Allan Goldstein, Chairman of the Biochemistry Department at George Washington University and founder of RegeneRX Biopharmaceuticals. RegeneRX is carrying out preclinical research on Tb4 as a wound healer, in collaboration with scientists at the National Institutes of Health.
To determine whether MAPK and NF-κB signaling pathways were involved in the anti-osteoclastogenic function of Tβ4, the effect of Tβ4 peptide on the phosphorylation levels of ERK, JNK, and p38 MAPK(s) as well as the nuclear translocation of NF-κB p65 in RANKL-stimulated BMMs were examined. As shown in Fig 8B, Tβ4 peptide inhibited the RANKL-induced phosphorylation of p38, ERK, and JNK and nuclear translocation of NF-κB p65.

Oxytocin is a peptide of nine amino acids (a nonapeptide) in the sequence cysteine-tyrosine-isoleucine-glutamine-asparagine-cysteine-proline-leucine-glycine-amide (Cys – Tyr – Ile – Gln – Asn – Cys – Pro – Leu – Gly – NH2, or CYIQNCPLG-NH2); its C-terminus has been converted to a primary amide and a disulfide bridge joins the cysteine moieties.[116] Oxytocin has a molecular mass of 1007 Da, and one international unit (IU) of oxytocin is the equivalent of about 2 μg of pure peptide.

Fortunately for the players, despite the appending doom touted by the media, the current research suggests Tβ4 is safe. 23 non-clinical toxicology studies have been performed “that demonstrate the safety of Tβ4 for its current and planned uses in man”. Significantly, a human clinical trial in healthy volunteers found “intravenous administration of Tβ4 appears to be safe and well-tolerated by all subjects with no dose limiting toxicity or serious adverse events reported”. Admittedly, this trial is limited in that it only followed subjects for a period of 28 days, and thus there is a need for further research if Tβ4 is ever to be developed as a medication.


Treatment with thymosin beta 4 (Tβ4) reduces infarct volume and preserves cardiac function in preclinical models of cardiac ischemic injury. These effects stem in part from decreased infarct size, but additional benefits are likely due to specific antifibrotic and proangiogenic activities. Injected or transgenic Tβ4 increase blood vessel growth in large and small animal models, consistent with Tβ4 converting hibernating myocardium to an actively contractile state following ischemia. Tβ4 and its degradation products have antifibrotic effects in in vitro assays and in animal models of fibrosis not related to cardiac injury. This large number of pleiotropic effects results from Tβ4’s many interactions with cellular signaling pathways, particularly indirect regulation of cellular motility and movement via the SRF–MRTF–G-actin transcriptional pathway. Variation in effects and effect sizes in animal models may potentially be due to variable distribution of Tβ4. Preclinical studies of PK/PD relationships and a reliable pharmacodynamic biomarker would facilitate clinical development of Tβ4.
Thymosin beta-4 is a naturally occurring peptide, and is found ubiquitously in our cells. A range of studies on animal models have indicated several key biological activities for Tβ4, such as “promot[ing] wound repair, tissue protection, and regeneration in the skin, eye, heart and central nervous system”. Only a handful of clinical trials in humans have attempted to explore these roles practically.
Letdown reflex. In lactating (breastfeeding) mothers, oxytocin acts at the mammary glands, causing milk to be ‘let down’ into a collecting chamber, from where it can be extracted by compressing the areola and sucking at the nipple. Sucking by the infant at the nipple is relayed by spinal nerves to the hypothalamus. The stimulation causes neurons that make oxytocin to fire action potentials in intermittent bursts; these bursts result in the secretion of pulses of oxytocin from the neurosecretory nerve terminals of the pituitary gland.
For this study, one of us, Ben Trumble, followed Tsimane men as they went hunting for food. Typically, Tsimane men set out alone or with a partner in the early morning and search in the forest for prey such as wild pigs, deer, monkeys, or the rare tapir. Following long looping trails they might be gone for eight or nine hours, traveling about six miles (ten kilometers). Ben collected saliva samples throughout the hunt in order to measure changes in men’s hormone levels.
Delayed Tβ4 treatment increases vascular density in the injured cortex, ipsilateral dentate gyrus, and CA3 region 35 days after TBI. Arrows show vWF-stained vascular structure. TBI alone (B) significantly increases the vascular density in the injured cortex compared to sham controls (A, P < 0.05). Tβ4 treatment (C) further enhances angiogenesis after TBI compared to the saline-treated groups (P < 0.05). The density of vWF-stained vasculature in different regions is shown in (D). Scale bar = 25 μm (C). Data represent mean + SD. *P < 0.05 vs Sham group. #P < 0.05 vs Saline group. N (rats/group) = 6 (Sham); 9 (Saline); and 10 (Tβ4).

I’ve been on this stuff for lots of years. I really needed it when I was depressed like hell, and I had an emotional pain that simply didn’t go away for 2 decades prior to starting that stack. Did it help? yes. Was it the best intervention possible? probably not. I was able to get off all this stuff with the uridine stack, and I believe it partly fixed a part of my brain that was damaged from this decade long suffering. So this is, why I am now more into brain regeneration and psychotherapeutic interventions (even though I do them myself), and I would only go back to this stack if I was completely fucked up again. There are a lot of side effects, and its a fine line to balance the supplements, to get rid of the side effects…
It should be noted that supplemental 5-HTP can cause an increase in urinary 5-HIAA, which is the major metabolite of serotonin that is excreted in the urine. Increased urinary 5-HIAA is also sometimes a diagonistic marker for carcinoid tumors due to increased conversion of tryptophan to serotonin in these tumors,[62][63] and in this case serum chromogranin A should be measured (as supplemental 5-HTP does not appear to increase chromogranin A).[63]
Hypoxic heart disease is a predominant cause of disability and death worldwide. As adult mammals are incapable of cardiac repair after infarction, the discovery of effective methods to achieve myocardial and vascular regeneration is crucial. Efforts to use stem cells to repopulate damaged tissue are currently limited by technical considerations and restricted cell potential. We discovered that the small, secreted peptide thymosin beta4 (Tbeta4) could be sufficiently used to inhibit myocardial cell death, stimulate vessel growth, and activate endogenous cardiac progenitors by reminding the adult heart on its embryonic program in vivo. The initiation of epicardial thickening accompanied by increase of myocardial and epicardial progenitors with or without infarction indicate that the reactivation process is independent of injury. Our results demonstrate Tbeta4 to be the first known molecule able to initiate simultaneous myocardial and vascular regeneration after systemic administration in vivo. Given our findings, the utility of Tbeta4 to heal cardiac injury may hold promise and warrant further investigation.
Addiction vulnerability: Concentrations of endogenous oxytocin can impact the effects of various drugs and one's susceptibility to substance use disorders. Additionally, bilateral interactions with numerous systems, including the dopamine system, Hypothalamic–pituitary–adrenal axis and immune system, can impact development of dependence. The status of the endogenous oxytocin system might enhance or reduce susceptibility to addiction through its interaction with these systems. Individual differences in the endogenous oxytocin system based on genetic predisposition, gender and environmental influences, may therefore affect addiction vulnerability.[72] Oxytocin may be related to the place conditioning behaviors observed in habitual drug abusers.

To further determine the potential anti-inflammatory effects of Tβ4 activation, expressions of proinflammatory or osteoclastogenic cytokines were measured by RT-PCR (Fig 4A). The TNF-α, IL-1β, IL-6, IL-8, and IL-17 mRNA levels increased in the H2O2- stimulated PDLCs, and these increases were significantly decreased in a concentration-dependent manner by treatment with the Tβ4 peptide. Since receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) are two important osteoclastogenic factors, we next explored the effects of Tβ4 peptide on RANKL and OPG expressions in PDLCs. Tβ4 peptide reduced H2O2-stimulated up-regulation of RANKL, with a reciprocal increase in OPG mRNA in a dose-dependent manner (Fig 4B).
In humans, the Tβ4 gene TMSB4X is localized to the X chromosome at Xq21.3–q22 (). The Tβ4 cDNA open reading frame contains an initial methionine codon followed by a codon for the N-terminal serine and, although cells secrete a certain amount of Tβ4, there is no hydrophobic signal sequence. The initial methionine residue of the nascent Tβ4 polypeptide is removed and the N-terminal serine residue is often acetylated in the cells.
What to know about hormonal imbalances While it is natural to experience hormonal imbalances at certain times in life, such as puberty, menopause, and pregnancy, some hormonal changes are related to underlying medical conditions. This article looks at the causes and symptoms of hormonal imbalances in men and women, as well as treatment and home remedies. Read now
100mg works well for mood and getting to sleep. Put 100mg in my Pre Workout Powder (Non Stimulant). Don't know if anyone else has tried this or if it was just a coincidence but it made the weights feel considerably lighter and I was able to use more weight than I have in a decade. I will definitely be trying that again. I also cut the bag open and emptied it into an old pill bottle through a small funnel. No wastage. Easy.
That view has led some clinicians to try oxytocin as a treatment for psychiatric conditions such as autism spectrum disorder. But the early trials have had mixed results, and scientists are now seeking a deeper understanding of oxytocin and how it works in the brain. Researchers such as Froemke are showing that the hormone boosts neuronal signals in a way that could accentuate socially relevant input such as distress calls or possibly facial expressions. And clinical researchers are starting a wave of more ambitious trials to test whether oxytocin can help some types of autism.

Nolen, W. A., van de Putte, J. J., Dijken, W. A., Kamp, J. S., Blansjaar, B. A., Kramer, H. J., and Haffmans, J. Treatment strategy in depression. II. MAO inhibitors in depression resistant to cyclic antidepressants: two controlled crossover studies with tranylcypromine versus L-5-hydroxytryptophan and nomifensine. Acta Psychiatr.Scand 1988;78(6):676-683. View abstract.
×