Potential side effects of 5-HTP include heartburn, stomach pain, nausea, vomiting, diarrhea, drowsiness, sexual problems, vivid dreams or nightmares, and muscle problems.[19] Because 5-HTP has not been thoroughly studied in a clinical setting, possible side effects and interactions with other drugs are not well known. According to the US National Institute of Health TOXNET, 5-HTP has not been associated with serotonin syndrome or any serious adverse events in humans.[20] Across multiple studies, 5-HTP also been reported to not cause any noticeable hematological or cardiovascular changes.[21] 5-HTP also has not been associated with eosinophilia.[22]
Delayed Tβ4 treatment increases vascular density in the injured cortex, ipsilateral dentate gyrus, and CA3 region 35 days after TBI. Arrows show vWF-stained vascular structure. TBI alone (B) significantly increases the vascular density in the injured cortex compared to sham controls (A, P < 0.05). Tβ4 treatment (C) further enhances angiogenesis after TBI compared to the saline-treated groups (P < 0.05). The density of vWF-stained vasculature in different regions is shown in (D). Scale bar = 25 μm (C). Data represent mean + SD. *P < 0.05 vs Sham group. #P < 0.05 vs Saline group. N (rats/group) = 6 (Sham); 9 (Saline); and 10 (Tβ4).

An estimated 1.4 million people sustain traumatic brain injury (TBI) each year in the United States, and more than 5 million people are coping with disabilities from TBI at an annual cost of more than $56 billion.1 There are no commercially-available pharmacological treatment options available for TBI because all clinical trial strategies have failed.2,3 The disappointing clinical trial results may be due to variability in treatment approaches and heterogeneity of the population of TBI patients.4-9 Another important aspect is that most clinical trial strategies have used drugs that target a single pathophysiological mechanism, although many mechanisms are involved in secondary injury after TBI.4 Neuroprotection approaches have historically been dominated by targeting neuron-based injury mechanisms as the primary or even exclusive focus of the neuroprotective strategy.3 In the vast majority of preclinical studies, the treatment compounds are administered early and, frequently, even before TBI.10,11 Clinically, the administration of a compound early may be problematic because of the difficulty in obtaining informed consent.12


A and B; Mouse BMMs were cultured with 200 μM H2O2 and indicated concentrations of Tβ4 peptide in the presence of M-CSF (30 ng/mL) and RANKL (100 ng/mL). C and D; PDLCs were co-cultured with mouse BMMs in the presence of M-CSF, RANKL, 200 μM H2O2, and indicated concentrations of Tβ4 peptide. To monitor osteoclast differentiation, both TRAP activity and the number of TRAP multinucleated cells were examined. * Statistically significant difference compared with control, p<0.05. The data presented were representative of three independent experiments.

Johansson, A., Westberg, L., Sandnabba, K., Jern, P., Salo, B., & Santtila, P. (2012). Associations between oxytocin receptor gene (OXTR) polymorphisms and self-reported aggressive behavior and anger: Interactions with alcohol consumption [Abstract]. Psychoneuroendocrinology 37(9), 1546-56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22421562

Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity worldwide. No effective pharmacological treatments are available for TBI because all Phase II/III TBI clinical trials have failed. This highlights a compelling need to develop effective treatments for TBI. Endogenous neurorestoration occurs in the brain after TBI, including angiogenesis, neurogenesis, synaptogenesis, oligodendrogenesis and axonal remodeling, which may be associated with spontaneous functional recovery after TBI. However, the endogenous neurorestoration following TBI is limited. Treatments amplifying these neurorestorative processes may promote functional recovery after TBI. Thymosin beta4 (Tβ4) is the major G-actin-sequestering molecule in eukaryotic cells. In addition, Tβ4 has other properties including anti-apoptosis and anti-inflammation, promotion of angiogenesis, wound healing, stem/progenitor cell differentiation, and cell migration and survival, which provide the scientific foundation for the corneal, dermal, and cardiac wound repair multicenter clinical trials. Here, we describe Tβ4 as a neuroprotective and neurorestorative candidate for treatment of TBI.
Before the treatment, the female mice were largely indifferent to the cries of a distressed baby, and were even known to trample over them. But after an injection of oxytocin, the mice started to respond more like mothers, picking up the mewling pup in their mouths. Froemke, a neuroscientist at New York University's Langone Medical Center in New York City, was monitoring the animals' brains to find out why that happened.

Oxytocin is known as the hormone that promotes feelings of love, bonding and well-being. It's even being tested as an anti-anxiety drug. But new research shows oxytocin also can cause emotional pain. Oxytocin appears to be the reason stressful social situations, perhaps being bullied at school or tormented by a boss, reverberate long past the event and can trigger fear and anxiety in the future. That's because the hormone actually strengthens social memory in the brain.
Anxiety. Evidence on the effects of 5-HTP for anxiety is unclear. Early research shows that taking 25-150 mg of 5-HTP by mouth daily along with carbidopa seems to reduce anxiety symptoms in people with anxiety disorders. However, other early research shows that taking higher doses of 5-HTP, 225 mg daily or more, seems to make anxiety worse. Also, taking 60 mg of 5-HTP daily through the vein does not reduce anxiety in people with panic disorders.
A later experiment by another group took it a step further. This time the volunteers were told how they did, and in half of the cases, they learned that the trustee had burned them and kept the money. The volunteers who were burned were asked whether they wanted to try again. What would you do? This would be like getting that spam from the Nigerian Prince a second time and sending him $5,000 again, right?
I’m always interested in learning about better supplements for my health. I’ve heard a lot of good things about peptides, but this was the first time I’ve read about TB-500 in particular. It sounds like it can have a major impact on helping you recover from injuries, which is a huge deal in today’s world. I may need to look into it some more before actually buying it, but thank you so much for taking the time to explain it!
Young says that the oxytocin field would benefit from closer collaboration between basic and clinical researchers. If basic scientists can work out how oxytocin helps the brain to process social stimuli, then that might help in the design of stimuli — in the form of behavioural therapies — that could be given alongside the hormone to change behaviour, just as oxytocin and pup calls together affect virgin mice. “I think in the future these two branches need to have more communication,” Young says.
To untangle the ways different hormones together influence behavior in more naturalistic contexts, we worked with the Tsimane people in Bolivia. Traditional societies like the Tsimane are not living relics of the past, but their lifeways – small, tight-knit communities that produce their own food – can reveal the kinds of situations our hormone systems are well adapted to.
Studies of oxytocin also have found that it is an important chemical messenger that controls some human behaviors and social interaction. It is oxytocin that triggers the bond between a mother and an infant, and it may also play a role in recognition, sexual arousal, trust, and anxiety. Some research shows that the hormone may affect addiction and stress as well.
Thymosin beta 4 (Tβ4) is a highly conserved, naturally occurring, water-soluble regenerative peptide that is found in all tissues and in all cell types, except red blood cells (Goldstein, Hannappel, Sosne, & Kleinman, 2012; Goldstein & Kleinman, 2015). It is also found in the blood and in other body fluids, including tears, saliva, cerebrospinal fluid, and wound fluids (Badamchian et al., 2007; Huang, Wang, Barnes, & Elmets, 2006; Mohring, Kellmann, Jurgens, & Schrader, 2005). Both platelets and leukocytes release Tβ4 into the wound fluid such that the final concentration is 13 μg/mL (Fromm, Gunne, Bergman, et al., 1996; Hannappel & van Kampen, 1987).
Tβ4 is not a thymus-specific peptide but also present in most tissue and all cells except red blood cells [35]. High amounts of Tβ4 were detected in human white blood cells, especially in neutrophils and in macrophages [34], expressed in developing mandible (embryonic day 12) [36] and hair follicles (HF) of mice [37]. In addition, the peptide is also detected outside cells, in blood plasma and in wound and blister fluids [34]. Although the mechanism(s) of action of exogenous Tβ4 on anti-inflammatory effects remains unclear, the high levels of Tβ4 present in human wound fluid (13 μg/mL) suggest its importance in wound healing or anti-inflammation [38]. However, the level of Tβ4 is variable (unchanged, decreased, and increased) in GCF or biopsied gingival tissue of periodontal patients [20, 21]. Based on the observations that Tβ4 has anti-inflammatory effects [11–14], the hypothesis is that Tβ4 regulates inflammatory mediators and osteoclastogenesis in osteolytic bone disease, such as periodontitis.
Its unique potential as a healing substance lies in that it interacts with cellular actin and regulates its activity. Tb4 prevents actin from assembling (polymerizing) to form filaments but supplies a pool of actin monomers (unpolymerized actin) when a cell needs filaments for its activity. A cell cannot divide if actin is polymerized. Tb4 therefore serves in vivo to maintain a reservoir of unpolymerized actin that will be put to use when cells divide, move and differentiate.
Some differences in cardiac anatomy exist between mammals and teleosts. The zebrafish ventricle has a thin wall of compact muscle surrounding a much larger compartment of myofibers organized into elaborate trabeculae. It is intriguing that this structure is very similar to that of the embryonic mammalian ventricle prior to its septation and fusion of trabeculer myofibers into a thick, vascularized wall (Sedmera et al., 2000). That the mammalian heart has a more differentiated, contractile anatomy is apparent not only in gross cardiac structure, but also in cellular features. Teleost cardiomyocytes are 2–10 times smaller, mononucleated, have a greatly-reduced sarcoplasmic reticulum and lack the T-tubule system found in skeletal muscle and mammalian cardiac muscle (Farrell, 1992). One might speculate that the teleost heart is better designed for growth and regeneration, while the mammalian heart is better designed for sheer contractile force. Nevertheless, none of the mentioned differences between lower and higher vertebrate hearts preclude the idea that the mammalian heart could be stimulated to regenerate, especially if that regeneration is due to mobilization of a progenitor cell population.
The studies that have been conducted have determined that this peptide is potent and that it occurs totally naturally. It does help to repair wounds using its anti-inflammatory characteristics. Unlike with growth factors and other repair factors, this peptide increases the migration of endothelial and keratinocyte. It also does not conjoin to extracellular matrixes and is noted as having a molecular weight that is very low, which enables it to travel far distances within tissues.

Thymosin beta 4 (Tβ4) is a highly conserved, naturally occurring, water-soluble regenerative peptide that is found in all tissues and in all cell types, except red blood cells (Goldstein, Hannappel, Sosne, & Kleinman, 2012; Goldstein & Kleinman, 2015). It is also found in the blood and in other body fluids, including tears, saliva, cerebrospinal fluid, and wound fluids (Badamchian et al., 2007; Huang, Wang, Barnes, & Elmets, 2006; Mohring, Kellmann, Jurgens, & Schrader, 2005). Both platelets and leukocytes release Tβ4 into the wound fluid such that the final concentration is 13 μg/mL (Fromm, Gunne, Bergman, et al., 1996; Hannappel & van Kampen, 1987).
Studies demonstrate that TB-500 is a potent, naturally occurring wound repair factor with anti-inflammatory properties. Tß4 is different from other repair factors, such as growth factors, in that it promotes endothelial and keratinocyte migration. It also does not bind to the extracellular matrix and has a very low molecular weight meaning it can travel relatively long distances through tissues. One of TB-500 key mechanisms of action is its ability to regulate the cell-building protein, Actin, a vital component of cell structure and movement. Of the thousands of proteins present in cells, actin represents up to 10% of the total proteins which therefore plays a major role in the genetic makeup of the cell.
We think that the most important region is the nucleus accumbens, which is kind of up here. The nucleus accumbens is where we can measure a release of the neurotransmitter dopamine when humans or animals take drugs or are exposed to other rewarding stimuli, such as sex. Or gambling, for example, or monetary reward activates the nucleus accumbens as well.
We have evaluated the efficacy of early Tβ4 treatment on spatial learning and sensorimotor functional recovery in rats after TBI induced by unilateral CCI.34 In brief, TBI rats received Tβ4 at a dose of either 6 or 30 mg/kg (RegeneRx Biopharmaceuticals Inc, Rockville, MD) or a vehicle control (saline) administered i.p. starting at 6 hours after injury and then at 24 and 48 hours. Spatial learning was performed during the last five days (31-35 days post injury) using the modified Morris water maze (MWM) test, which is extremely sensitive to the hippocampal injury.35-37 Tβ4-treated TBI rats showed significant improvement in spatial learning when compared to the saline-treated TBI rats. Tβ4 treatment also significantly reduced the swim latency to reach the hidden platform by rats post TBI compared to saline treatment. Using the modified Neurological Severity Score (mNSS) test, our data show that significantly improved scores were observed after TBI in the Tβ4-treated group compared to the saline-treated group. Our data also show that Tβ4 reduced the incidence of both right forelimb and hindlimb footfaults in TBI rats.34 Histological data show that early Tβ4 treatment reduced cortical lesion volume by 20% and 30% for 6 mg/kg and 30 mg/kg, respectively, and reduced hippocampal cell loss. These findings suggest that TB4 provides neuroprotection even when the treatment was initiated 6 hours post injury. In addition, 6-hour Tβ4 treatment promotes neurogenesis in the dentate gyrus (DG) of the hippocampus,38 which may contribute to improvement in spatial learning.
The molecule of this peptide is very big, so it isn’t able to completely fit within a receptor. Each area of the molecule has different functions. For instance, TB 500 is responsible for promoting majority of the useful effects, such as the healing, muscle cells, new blood and repair. In some scenarios, TB 500 could be used rather than the whole Thymosin Beta 4 protein. TB 500’s main ability is to regulate Actin, which is a cell-building protein. There are thousands of proteins found inside of cells, but actin makes up to 10 percent of the total amount of proteins, giving it a major role in the cell’s genetic makeup.
TB-500 is a synthetic version of the naturally occurring peptide present in virtually all human and animal cells, Thymosin Beta-4. This potent peptide is a member of a ubiquitous family of 16 related molecules with a high conservation of sequence and localization in most tissues and circulating cells in the body. TB-500 not only binds to actin, but also blocks actin polymerization and is the actin-sequestering molecule in eukaryotic cells.
Johansson, A., Westberg, L., Sandnabba, K., Jern, P., Salo, B., & Santtila, P. (2012). Associations between oxytocin receptor gene (OXTR) polymorphisms and self-reported aggressive behavior and anger: Interactions with alcohol consumption [Abstract]. Psychoneuroendocrinology 37(9), 1546-56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22421562

The activity of the PAM enzyme system is dependent upon vitamin C (ascorbate), which is a necessary vitamin cofactor. By chance, sodium ascorbate by itself was found to stimulate the production of oxytocin from ovarian tissue over a range of concentrations in a dose-dependent manner.[23] Many of the same tissues (e.g. ovaries, testes, eyes, adrenals, placenta, thymus, pancreas) where PAM (and oxytocin by default) is found are also known to store higher concentrations of vitamin C.[24]
James Bates* who recently started taking it for panic attacks, said, "A friend who had anxiety recommended 5-HTP to me. I used to take beta-blockers and Valium but the doctors have got funny about giving them to me. I needed an alternative and didn't fancy getting back on Prozac. I've only been taking the supplements for a month but so far, it's helped a lot. I've only had two panic attacks, whereas usually I'd have four or five."
Although Tβ4 contains only 43 amino acids, it appears to have a wide range of regenerative activities and specific sites on the molecule have been shown to mediate these effects (Goldstein & Kleinman, 2015; Sosne, Qiu, Goldstein, & Wheater, 2010). Both chemically synthesized and recombinant forms have shown efficacy for dermal healing in preclinical models and in human patients (Ehrlich & Hazard, 2012; Kim & Kwon, 2014, 2015; Malinda et al., 1999; Philp, Badamchian, et al., 2003; Philp & Kleinman, 2010; Philp et al., 2006; Ti et al., 2015; Treadwell et al., 2012). A dimeric form has been found to accelerate the rate of dermal healing in an animal model more rapidly than that of the parent molecule (Xu et al., 2013). Tβ4 has also shown repair and regenerative activity in a number of other injury models, such as traumatic brain injury, spinal cord injury, stroke, a model of multiple sclerosis, ischemic limbs, and cardiac damage due to ischemia (Bock-Marquette, Saxena, White, Dimaio, & Srivastava, 2004; Cheng, Kuang, Zhang, Ju, & Wang, 2014; Dube, Bollini, Smart, & Riley, 2012; Morris, Chopp, Zhang, Lu, & Zhang, 2010; Morris et al., 2014; Philp & Kleinman, 2010; Postrach et al., 2014; Smart et al., 2007; Sopko et al., 2011; Ti et al., 2015, Wang et al., 2012; Wei, Kim, Li, Wu, & Gupta, 2014; Xiong, Mahmood, Meng, et al., 2011; Zhang, Zhang, Morris, et al., 2009; Zuo et al., 2013). The processes and pathways for Tβ4-mediated repair are similar in these various tissues and support the observed promotion of dermal healing.

Bonding. In the Prairie Vole, oxytocin released into the brain of the female during sexual activity is important for forming a monogamous pair bond with her sexual partner. Vasopressin appears to have a similar effect in males. In people, plasma concentrations of oxytocin have been reported to be higher amongst people who claim to be falling in love. Oxytocin has a role in social behaviors in many species, and so it seems likely that it has similar roles in humans.6
Don’t take it by itself, you want to take it with a meal. The half life seems to vary; some people just need to take a single dose daily whereas some break it up into several doses. The dosage range is pretty wide, from 50 to 900 milligrams. Many report the antidepressant effect desired from lower doses, so start low with this one. Do not use a liquid form of 5-HTP.
Injection is the most effective way to administrate the peptide and results are seen the fastest and best. The nasal spray method is effective up to 30 – 40% because the nasal passages have poor absorption rate, you have to apply the nasal spray at least two to three times more than the injection. The injectable product of the Melanotan is very superior as compared to the nasal version. The nasal versions generally take four to five weeks for displaying the results appose to 10 days with the injection.

This copyrighted, evidence-based medicine resource is provided by Natural Medicines Comprehensive Database Consumer Version. Natural Medicines Comprehensive Database disclaims any responsibility related to consequences of using any product. This monograph should not replace advice from a healthcare professional and should not be used for the diagnosis or treatment of any medical condition.


In humans, the Tβ4 gene TMSB4X is localized to the X chromosome at Xq21.3–q22 (). The Tβ4 cDNA open reading frame contains an initial methionine codon followed by a codon for the N-terminal serine and, although cells secrete a certain amount of Tβ4, there is no hydrophobic signal sequence. The initial methionine residue of the nascent Tβ4 polypeptide is removed and the N-terminal serine residue is often acetylated in the cells.

The sequence LKKTET, which starts at residue 17 of the 43-aminoacid sequence of thymosin beta-4, and is strongly conserved between all β-thymosins, together with a similar sequence in WH2 domains, is frequently referred to as "the actin-binding motif" of these proteins, although modelling based on X-ray crystallography has shown that essentially the entire length of the β-thymosin sequence interacts with actin in the actin-thymosin complex.[13]
Although obtaining Melanotan II and Bremelanotide is relatively easy to do, both substances come in powder form and then must be reconstituted using sterile water prior to subcutaneous injection—a method of administration that can cause lead to skin bruising, cross-contamination, or infection, if the person performing the injection is inexperienced and the syringe isn't clean.

Thymosin beta 4 is a small 43 amino acid protein (a peptide) that was originally identified in calf thymus, an organ that is central in the development of immunity. Tb4 was later found in all cells except red blood cells. It is highest in blood platelets that are the first to enter injured areas, in wound healing. Tb4 is also detected outside cells, in blood plasma and in wound and blister fluids.
For depression: Most commonly, 150-800 mg daily is taken for 2-6 weeks. These doses are sometimes divided up and administered as 50 mg to 100 mg three times a day. Sometimes the dose starts out low and steadily increases every 1-2 weeks until a target dose is reached. Less commonly, higher doses are used. In one study, the dose is steadily increased up to 3 grams per day.
Other supplements are available which have appetite supressant and mood enhancing effects similar to 5-HTP. These type of ingredients are often included, in optimal pre-formulated dosages in fat burners. Phenylethylamine is also another ingredient with mood enhancing potential that is often found in fat burners in place of 5-HTP. 5-HTP can be found in some sleep supplements, though in Australia they are replaced by ingredients such as GABA and phenibut.

Again, the three groups of mice were exposed to the stressful experience of social defeat in the cages of other more aggressive mice. This time, six hours after the social stress, the mice were put in a box in which they received a brief electric shock, which startles them but is not painful. Then 24 hours later, the mice were returned to the same box but did not receive a shock.

What is serotonin and what does it do? Serotonin is a chemical that transmits messages between nerve cells. Known as the happy chemical, serotonin plays a major role in the body by contributing to well-being, good mood, appetite, memory, and sleep. This article looks at what happens when a person is deficient in serotonin, and whether it can aid depression. Read now


Thymosin β4 has been tested in multicenter trials sponsored jointly by RegeneRx Biopharmaceuticals Inc (Rockville, MD, USA) and Sigma Tau (Pomezia, Italy) in the United States and Europe in patients with bed sores, ulcers caused by venostasis, and Epidermolysis bullosa simplex and was found to accelerate bed sore and stasis ulcer repair by one month. It has also been tested in patients with chronic neurotrophic corneal epithelial defects and found to promote repair.
At least one study using an extract of Griffonia simplicifolia (10.24mg giving 2.56mg 5-HTP; confounded with Centella asiatica and Taraxacum officinale at 11.7mg and 4.55mg Paulina cupana and 9.75mg Artichoke extract) taken in three hits, five times a day (40mg 5-HTP total), by 20 overweight or obese females (non-depressive and without eating disorders) for 4 weeks has noted an increase in satiety and reduced binge eating tendencies; the increase in satiety was said to account for the improved weight loss results seen in the experimental group when both were given weight loss advice and diets.[3] This spray has been noted elsewhere to increase satiety (and vicariously through that, body weight) over 2 months in a similar demographic of women.[2]

Some differences in cardiac anatomy exist between mammals and teleosts. The zebrafish ventricle has a thin wall of compact muscle surrounding a much larger compartment of myofibers organized into elaborate trabeculae. It is intriguing that this structure is very similar to that of the embryonic mammalian ventricle prior to its septation and fusion of trabeculer myofibers into a thick, vascularized wall (Sedmera et al., 2000). That the mammalian heart has a more differentiated, contractile anatomy is apparent not only in gross cardiac structure, but also in cellular features. Teleost cardiomyocytes are 2–10 times smaller, mononucleated, have a greatly-reduced sarcoplasmic reticulum and lack the T-tubule system found in skeletal muscle and mammalian cardiac muscle (Farrell, 1992). One might speculate that the teleost heart is better designed for growth and regeneration, while the mammalian heart is better designed for sheer contractile force. Nevertheless, none of the mentioned differences between lower and higher vertebrate hearts preclude the idea that the mammalian heart could be stimulated to regenerate, especially if that regeneration is due to mobilization of a progenitor cell population.

I’m always interested in learning about better supplements for my health. I’ve heard a lot of good things about peptides, but this was the first time I’ve read about TB-500 in particular. It sounds like it can have a major impact on helping you recover from injuries, which is a huge deal in today’s world. I may need to look into it some more before actually buying it, but thank you so much for taking the time to explain it!
A: 5-HTP is classified as a dietary supplement. Because dietary supplements have not been thoroughly studied in the clinical setting, possible side effects and interactions with other drugs are not well-known. Also, because herbs and supplements are not strictly regulated by the U.S. Food and Drug Administration (FDA), these products are not required to be tested for effectiveness, purity, or safety. In general, dietary supplements should only be taken under the supervision of your health care provider. For more specific information, consult with your pharmacist about the potential for drug interactions based on your specific condition and current medications, particularly before taking any action. When your doctor prescribes a new medication, be sure to discuss all your prescription and over-the-counter drugs, including dietary supplements, vitamins, botanicals, minerals, and herbals, as well as the foods you eat. Always keep a current list of the drugs and supplements you take and review it with your health care providers and your pharmacist. If possible, use one pharmacy for all your prescription medications and over-the-counter products. This allows your pharmacist to keep a complete record of all your prescription drugs and to advise you about drug interactions and side effects. For more specific information, consult with your doctor or pharmacist for guidance based on your health status and current medications, particularly before taking any action. Jen Marsico, RPh
We had previously reported that successful hunters experienced a surge in testosterone that lasted from the moment they made a kill until their return home – a “winner effect,” rewarding them for their work. Testosterone reinforces the hunting activity and simultaneously helps with muscle regeneration afterwards - similar to the elated feeling we might have after doing sports or other exercise.
The vascular system in the normal adult brain is stable, but is activated in response to certain pathological conditions including injuries.68 Von Willebrand factor (vWF) staining has been used to identify vascular structure in the brain after TBI.69 TBI alone significantly increased vascular density in the injured cortex, CA3, and DG of the ipsilateral hemisphere when examined at day 35 after TBI compared to sham controls.18,34,64,65 Tβ4 treatment significantly increased the vascular density in these regions compared to saline treatment.34 This is in agreement with in vitro and in vivo pro-angiogenic effect of Tβ4.70,71

Oxytocin secreted from the pituitary gland cannot re-enter the brain because of the blood-brain barrier. Instead, the behavioral effects of oxytocin are thought to reflect release from centrally projecting oxytocin neurons, different from those that project to the pituitary gland. Oxytocin receptors are expressed by neurons in many parts of the brain and spinal cord, including the amygdala, ventromedial hypothalamus, septum and brainstem.
Neurovascular units within the central nervous system consist of endothelial cells, pericytes, neurons and glial cells, as well as growth factors and extracellular matrix proteins that are close to the endothelium.72,73 Neurovascular units provide niches for neural stem/progenitor cells in the adult brain and, within these units, newly-generated immature neurons are closely associated with the remodeling vasculature. The generation of new vasculature facilitates several coupled neurorestorative processes including neurogenesis and synaptogenesis, which improve functional recovery.74-76 The vascular production of stromal-derived factor 1 and angiopoietin 1 is involved in neurogenesis and promotes behavioral recovery after stroke.77 The disruption of this neurovascular coordination has been observed in a variety of brain conditions including infection, stroke and trauma.78 The injured brain promotes angiogenesis and neurogenesis,13,32,69,79-84 that may contribute to spontaneous functional recovery from injuries such as stroke and TBI. Neurorestorative agents that increase angiogenesis and neurogenesis have been shown to improve functional outcome following brain injury.19,33 Vascular endothelial cells within the neurovascular niche affect neurogenesis directly via contact with neural progenitor cells, while soluble factors from the vascular system that are released into the CNS enhance neurogenesis via paracrine signaling.85 Here, we demonstrate that Tβ4 treatment promotes both angiogenesis and neurogenesis in rats after TBI, suggesting that the neurovascular remodeling at least partially contributes to Tβ4-mediated improvement in functional recovery. A better understanding of molecular mechanisms in the neurovascular niches will be important for developing novel angiogenic and neurogenic therapies for brain injuries.
Moreover, Tβ4 concentration revealed wide variability, and it decreased in the gingival crevicular fluid (GCF) as periodontal disease progressed [19]. In contrast, Tβ4 mRNA expression was 3.76 fold higher in periodontitis-affected gingival tissue, compared with healthy individuals’ tissue obtained from public microarray data (GEO assession: GSE 23586) [20]. However, the Tβ4 mRNA level did not change in the periodontal-diseased gingival tissue (arbitrary units; 6.249) when compared with healthy tissue (arbitrary units; 6.242) (GEO assession: GSE 10334) [21]. Although Tβ4 exerts anti-inflammatory effects in vivo and in vitro, the precise role of Tβ4 in the inflammatory response remains unclear.
I have bee suffering from severe symptoms of post concussion syndrome for several.months after a car accident. The use of TB500 has been the only trratment ease my symptoms and give me my life back. I ceased use last week after 3 weeks and had reoccuring concussion symptoms. As such? I recommenced injections as of last night. Have you read much about the impact of TB500 on brain injury as I’d love to know if more prolonged use would have a permanent impact/remedy for me? Thanks for your time and interest.

It’s a compound that the body needs in order to make serotonin, which is our main “happiness hormone.” Per Dr. Oz, 5-HTP floods the brain with serotonin and helps minimize stress, sadness, anger, and anxiety. “5-HTP targets specific emotions that drive us to overeat,” Dr. Bhatia explains. And as she already mentioned, 5-HTP also reduces physical hunger pangs and emotional cravings. Ideally, the body makes its own 5-HTP from the amino acid tryptophan, found in foods like turkey and bananas. (Why not just eat more turkey or take a tryptophan supplement? If you struggle with mood or weight, it can be a sign that your body has trouble converting tryptophan to 5-HTP.) Besides making it yourself, the only other way to get 5-HTP is from a supplement. One we like is the BRI 5-HTP Supplement ($16 for 120 capules, Amazon).


Both the production of oxytocin and response to oxytocin are modulated by circulating levels of sex steroids. The burst of oxytocin released at birth seems to be triggered in part by cervical and vaginal stimulation by the fetus, but also because of abruptly declining concentrations of progesterone. Another well-studied effect of steroid hormones is the marked increase in synthesis of uterine (myometrial) oxytocin receptors late in gestation, resulting from increasing concentrations of circulating estrogen.
“L-5-Hydroxytryptophan significantly reduced the reaction to the panic challenge in panic disorder patients, regarding subjective anxiety, panic symptom score and number of panic attacks, as opposed to placebo. No such effect was observed in the healthy volunteers. L-5-Hydroxytryptophan acts to inhibit panic, which supports a modulatory role of serotonin in panic disorder.”
×