Animal studies have found high levels of both stress and oxytocin in voles that were separated from other voles. However, when the voles were given doses of oxytocin, their levels of anxiety, cardiac stress, and depression fell, suggesting that stress increases internal production of the hormone, while externally supplied doses can help reduce stress.
Side effects:  Side effects for Melanotan 2 include nausea, appetite loss, facial flushing and increased libido. Side effects are generally mild and tend to diminish over time. Some research suggests nausea can be reduced by injecting MT-II after dinner or before bed. Athletes and bodybuilders have injected peptides like Melanotan 2 intermittently to prolong their tan since a tan aided by Melanotan can last 2-3 times as long as a normal tan. Like other peptides, Melanotan is a fragile molecule, therefore Melanotan nasal sprays, pre-mixed peptides, pills, oral and loose powder are not often legitimate for research effectiveness.
The structure of oxytocin is very similar to that of vasopressin (cysteine - tyrosine - phenylalanine - glutamine - asparagine - cysteine - proline - arginine - glycine), also a nonapeptide with a sulfur bridge, whose sequence differs from oxytocin by 2 amino acids. A table showing the sequences of members of the vasopressin/oxytocin superfamily and the species expressing them is present in the vasopressin article. Oxytocin and vasopressin were isolated and synthesized by Vincent du Vigneaud in 1953, work for which he received the Nobel Prize in Chemistry in 1955.
Conclusions:  Melanotan not a treatment or cure for anything.  Nor should it be considered a preventative treatment for skin cancer.  Despite this tanning peptide being known to protect the skin through the natural tanning process, it is not in and itself a guaranteed full proof UV shield.  However, it is a great way for those who don't tan easily to get sun-kissed all year long with minimal exposure to the sun.
Therefore, this study was designed to investigate whether Tβ4 was up-regulated in patients with periodontitis, and this study was also designed to investigate whether Tβ4 inhibition or activation suppressed the osteoclastic differentiation in mouse bone marrow-derived macrophages (BMMs) and inflammatory response in periodontal ligament cells (PDLCs) as well as on their signaling pathways.
To untangle the ways different hormones together influence behavior in more naturalistic contexts, we worked with the Tsimane people in Bolivia. Traditional societies like the Tsimane are not living relics of the past, but their lifeways – small, tight-knit communities that produce their own food – can reveal the kinds of situations our hormone systems are well adapted to.
The oxytocin peptide is synthesized as an inactive precursor protein from the OXT gene.[18][19][20] This precursor protein also includes the oxytocin carrier protein neurophysin I.[21] The inactive precursor protein is progressively hydrolyzed into smaller fragments (one of which is neurophysin I) via a series of enzymes. The last hydrolysis that releases the active oxytocin nonapeptide is catalyzed by peptidylglycine alpha-amidating monooxygenase (PAM).[22]
To untangle the ways different hormones together influence behavior in more naturalistic contexts, we worked with the Tsimane people in Bolivia. Traditional societies like the Tsimane are not living relics of the past, but their lifeways – small, tight-knit communities that produce their own food – can reveal the kinds of situations our hormone systems are well adapted to.
James Bates* who recently started taking it for panic attacks, said, "A friend who had anxiety recommended 5-HTP to me. I used to take beta-blockers and Valium but the doctors have got funny about giving them to me. I needed an alternative and didn't fancy getting back on Prozac. I've only been taking the supplements for a month but so far, it's helped a lot. I've only had two panic attacks, whereas usually I'd have four or five."
Sexual activity: The relationship between oxytocin and human sexual response is unclear. At least two uncontrolled studies have found increases in plasma oxytocin at orgasm – in both men and women.[103][104] Plasma oxytocin levels are notably increased around the time of self-stimulated orgasm and are still higher than baseline when measured five minutes after self arousal.[103] The authors of one of these studies speculated that oxytocin's effects on muscle contractibility may facilitate sperm and egg transport.[103]
Cells were pretreated with indicated concentrations of Tβ4 peptide for 2 hours, post-incubated with 200 μM H2O2 for 48 hours, and then conditioned medium (CM) was collected. Mouse BMMs were cultured with CM in the presence of M-CSF (30 ng/mL) and RANKL (100 ng/mL), as described in Materials and methods. After 5 days, cells were fixed and stained for TRAP as a marker of osteoclasts (A), and the number of TRAP-positive multinucleated cells (MNCs) was scored (B). TRAP osteoclast activity was assayed using the TRAP cytochemical stain technique (C). * Statistically significant differences compared with the control, p<0.05. The data presented were representative of three independent experiments.
In years past, oxytocin had the reputation of being an "uncomplicated" hormone, with only a few well-defined activities related to birth and lactation. As has been the case with so many hormones, further research has demonstrated many subtle but profound influences of this little peptide, particularly in regards to its effects in the brain. Oxytocin has been implicated in setting a number of social behaviors in species ranging from mice to humans. For example, secretion or administration of oxytocin in humans appears to enhance trust and cooperation within socially-close groups, while promoting defensive aggression toward unrelated, competing groups.
Who is 5-HTP best for? Emotional eaters stand to benefit greatly, of course. So do carb addicts. Carbs help the body make 5-HTP — so when 5-HTP or serotonin are low, carb cravings kick in. Boosting 5-HTP with a supplement has been shown to slash carb cravings by more than 50 percent. And if a “fat gene” runs in your family, early evidence hints that this genetic tendency toward obesity is linked to “decreased activity of an enzyme that helps turn tryptophan into 5-HTP,” explains Michael T. Murray, ND, author of 5-HTP: The Natural Way to Overcome Depression, Obesity and Insomnia ($14.77, Amazon). Though more human research is needed, Dr. Murray believes 5-HTP supplements are a quick fix for the genetic glitch.
Work with cell cultures and experiments with animals have shown that administration of thymosin β4 can promote migration of cells, formation of blood vessels, maturation of stem cells, survival of various cell types and lowering of the production of pro-inflammatory cytokines. These multiple properties have provided the impetus for a worldwide series of on-going clinical trials of potential effectiveness of thymosin β4 in promoting repair of wounds in skin, cornea and heart.[17]
Because of its role in creating serotonin, 5-HTP is indirectly involved in producing melatonin, a hormone that is critical for sleep. Melatonin helps the body’s bio clock stay in sync, and regulates daily sleep-wake cycles. A strong bio clock and regular sleep-wake routines are the cornerstone of healthy, restful, rejuvenating sleep. Research suggests that 5-HTP may help shorten the time it takes to fall asleep and increase sleep amounts.
Cells were pretreated with indicated concentrations of Tβ4 peptide for 2 hours, post-incubated with 200 μM H2O2 for 48 hours, and then conditioned medium (CM) was collected. Mouse BMMs were cultured with CM in the presence of M-CSF (30 ng/mL) and RANKL (100 ng/mL), as described in Materials and methods. After 5 days, cells were fixed and stained for TRAP as a marker of osteoclasts (A), and the number of TRAP-positive multinucleated cells (MNCs) was scored (B). TRAP osteoclast activity was assayed using the TRAP cytochemical stain technique (C). * Statistically significant differences compared with the control, p<0.05. The data presented were representative of three independent experiments.
As shown in Figure 1, thymic hormones also modulate the production of hypothalamus pituitary hormones and neuropeptides. Initial experiments revealed that neonatal thymectomy promotes a decrease in the number of secretory granules in acidophic cells of the adenopituitary [44]. In the same vein, athymic nude mice display low levels of various pituitary hormones, such as PRL, GH, LH and FSH [45]. With regard to thymic peptides, thymosin beta-4, when perfused intraventricularly, stimulates LH and LHRH secretion [46]. Similar results were obtained with another thymic peptide, thymulin, in perfused or fragmented pituitary preparations [47]. The administration of thymopoietin (another chemically-defined thymic hormone) in children with Hodgkin’s disease increased GH and cortisol serum levels [48]. Moreover, thymopentin (the synthetic biologically active peptide of thymopoietin) enhances in vitro the production of ACTH and beta-endorphin [49]. In addition, thymulin exhibits an in vitro stimulatory effect on perfused rat pituitaries, enhancing PRL, GH, TSH and LH release [50]. Using short-term cultures of pituitary fragments, an increase in ACTH secretion occurs after in vitro thymulin addition, with no changes in GH levels and significant reductions in PRL release [47]. A further thymosin peptide was recently isolated with the task in stimulating IL-6 release from rat glioma cells [51]. By contrast, thymosin alpha-1 is apparently able to down regulate TSH, ACTH and PRL secretion in vivo with no modifications on GH levels [52]. These inhibitory effects seem to occur through hypothalamic pathways. Indeed, the production of the corresponding releasing hormones by hypothalamic neurones decreased after in vitro addition of thymosin alpha-1 in medial basal hypothalamic fragments [52].
The group had first identified the thymosin sulfoxide as an active factor in culture fluid of cells responding to treatment with a steroid hormone, suggesting that its formation might form part of the mechanism by which steroids exert anti-inflammatory effects. Extracellular thymosin β4 would be readily oxidised to the sulfoxide in vivo at sites of inflammation, by the respiratory burst.[21]

The full-length Tβ4 polypeptide has been shown to be effective in reducing inflammation [44]. It is also reported that only the 4-AA, amino-terminal peptide of Tβ4, known as Ac-SDKP, can block inflammation [45]. In this study, we used a synthetically human peptide produced copy of a naturally occurring, highly conserved 43-amino acid (MW = 4964 Da) water soluble acidic peptide, originally isolated from bovine thymus tissue [46]. This peptide is produced by Fmoc solid-phase peptide synthesis in accordance with the current Good Manufacturing Practice (cGMP) regulations (21 CFR 210 and 211) of the FDA [47]. An effective healer, Tβ4 can be administered topically on the surface of cells and systemically, through injection [9–11]. In this study, Tβ4 activation by Tβ4 peptide inhibited H2O2-induced production of NO and PGE2, expression of COX-2 and iNOS, and mRNA expression of TNF- α, IL-1β, -6, -8, and -17 in cultured PDLCs. These findings suggested that Tβ4 activation possessed anti-inflammatory activity in PDLCs. These results were consistent with previous in vivo and in vitro studies [9–15]. MAPK is a proline-directed serine/threonine kinase consisting of three-enzyme modules; its targets, inducing ERK, JNK and p38 kinases, are important in cellular signal transduction pathways and exert an anti-inflammatory response [48, 49]. NF-κB is a major transcription factor involved in the release of proteins that mediate the inflammatory response, and the degradation and phosphorylation of Iκ-Bα are necessary to release NF-κB from the cytoplasmic NF-κB/Iκ-Bα complex and allow its subsequent translocation to the nucleus of the cell [50]. In this study, Tβ4 peptide down-regulated the H2O2-triggered activation of the ERK and JNK MAPKs and the NF-κB in PDLCs. These results suggested that the ERK and JNK MAPKs and the NF-κB pathway may be involved in the anti-inflammatory effects of Tβ4 activation in PDLCs. Consistent with our findings, Tβ4 treatment decreased TNF-α-induced NF-κB activation in human corneal epithelial cells [51].

An interesting concept that has emerged from initial findings is that regeneration and fibrosis are competing events in the vertebrate heart. That is, if there is a capacity for injury-stimulated cardiomyocyte hyperplasia beyond a certain threshold, regenerative mechanisms will overcome scarring. Results consistent with this idea came from experiments with zebrafish possessing a ts mutation in the cell-cycle checkpoint kinase Mps1 (Poss et al., 2002b). As mentioned earlier, mps1 mutants were initially identified based on their defects in caudal fin regeneration. Serendipitously, mps1 mutants also showed defects in cardiac regeneration at a temperature restrictive for the mutation (Poss et al., 2002b). Instead of regenerating muscle in response to ventricular resection injury, mps1 mutants repaired wounds by forming large, collagen-rich scars. Inhibition of Fgf signaling also stunts cardiac regeneration and causes scarring (Lepilina et al., 2006). These results indicate that even vertebrates with high cardiac regenerative capacity have a default scarring mechanism; normally, regeneration somehow restricts this pathway (Fig. 8). The implication is exciting; perhaps by stimulating regeneration in a poorly-regenerative system like the mammalian heart, scarring events characteristic of myocardial infarction would be restricted by new muscle formation. Similarly, deterring cardiac scarring mechanisms would perhaps favor regeneration in mammals.
Astrocytes constitute the largest population of cells in the central nervous system, constituting approximately 90% of human parenchymal cells. Astrocytes are highly responsive to injury, undergoing rapid hyperplasia and hypertrophy. Astrocytes act as physical and biochemical barriers to axonal regeneration by forming glial scars along ischemic lesions and producing axonal growth-inhibitory proteoglycans. Administration of MSCs significantly attenuates the glial scar in the ischemic boundary and reduces expression of inhibitory proteins, such as Nogo. Analysis of single-cell astrocytes isolated from the ischemic boundary by laser capture microdissection reveals that administration of MSCs dramatically down regulates neurocan, an axonal growth-inhibitory proteoglycan. Coculture of MSCs with astrocytes also substantially reduces neurocan expression in astrocytes activated by oxygen glucose deprivation. These findings suggest that injected MSCs reduce physical and biochemical barriers of astrocytes, which also contribute to axonal and neurite outgrowth.
In women, oxytocin is responsible for signaling contractions of the womb during labor. The hormone stimulates the uterine muscles to contract, so labor begins. It also increases the production of prostaglandins, which move labor along and increases the contractions even more. Because of this effect, synthetic oxytocin (pitocin) is sometimes used to induce a woman to start labor if she cannot start naturally, or it can be given to make contractions stronger if a woman's labor is slowing.

Oxytocin production does not exist separately from the evolved neurophysiological mechanisms that regulate gonadotropin releasing hormone (GnRH) pulsatility. There are mammalian pheromones that are known to directly influence the GnRH pulse, for example androstenol. Oxytocin is not considered to be a pheromone by anyone I know who is involved in olfactory research. Sniffing it is simply a delivery method that we now can see might have negative consequences.
Jump up ^ Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N, Stoffler D, Aebi U, Mannherz HG (Jan 2002). "Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin". Journal of Molecular Biology. 315 (4): 613–25. doi:10.1006/jmbi.2001.5281. PMID 11812134.
Sexual activity has been found to stimulate the release of oxytocin, and it appears to have a role in erection and orgasm. The reason for this is not fully understood, but, in women, it may be that the increased uterine motility may help sperm to reach their destination. Some have proposed a correlation between the concentration of oxytocin and the intensity of orgasm.

In December 2010, the delegate made a delegate only decision to include afamelanotide (also known as melanotan I) with a cross-reference to melanocyte stimulating hormone (MSH) for inclusion into the current Poisons Standard. It was noted that afamelanotide should not be confused with a similar substance commonly known as Melanotan-II, which is a cyclic lactam synthetic analogue of α-MSH. It was noted that melanotan-II was under investigation for treating sexual dysfunction, although this has been abandoned due to side effects associated with the immune and cardiovascular systems. Its metabolite, bremelanotide, is under investigation for treating haemorrhagic shock.
It turns out oxytocin is responsible for a lot more than just love. New science has found that this amazing molecule also influences how sociable each of us is, allowing us to 'tune in' to the social information around us, perceiving it in much higher resolution. Scientists are now applying this new knowledge in the lab, and as reporter Dr Graham Phillips finds out, they're discovering oxytocin's great potential to treat social disorders, like drug addiction and alcoholism.
The activity of the PAM enzyme system is dependent upon vitamin C (ascorbate), which is a necessary vitamin cofactor. By chance, sodium ascorbate by itself was found to stimulate the production of oxytocin from ovarian tissue over a range of concentrations in a dose-dependent manner.[23] Many of the same tissues (e.g. ovaries, testes, eyes, adrenals, placenta, thymus, pancreas) where PAM (and oxytocin by default) is found are also known to store higher concentrations of vitamin C.[24]

Growth factors play an important role is enhancing structural repair of chronic wounds (Robson, 1997). KGF-2 (Robson et al., 2001), TGF-β (Robson et al., 1995), PDGF-BB (Mustoe et al., 1994; Kiritsy et al., 1995; Smiell et al., 1999), β-NGF (Muangman et al., 2004) have been shown to enhance re-epithelialization (Greenalgh, 1996 for review). The KGF-1 gene has been shown to improve cutaneous wound healing in a septic rat model when delivered in a plasmid (Lin et al., 2006). The PDGF-B gene carried in a plasmid mixed with a bovine collagen gel was reported to accelerate closure of patient diabetic ulcers (Mulder et al., 2009; Blume et al., 2011). KGF-2, PDGF-BB and FGF-L are commercially available as RepiferminTM, RegranexTM, and Trafermin to treat human chronic wounds. Data for the effects of PDGF-BB on back wounds of diabetic mice and for the effects of KGF-2 on chronic venous ulcers in patients is tabulated in Tables 10.3 and 10.4. Thymosin β4 accelerated keratinocyte migration in the wounds of old diabetic mice (Philp et al., 2003).

This mother-child bonding is the most glorified myth that is not re-thought as often as it should. Its apparant purpose is just to make a dangerously selfish mother (such frustrated mothers do exist a lot more than we read in the news) to think twice before harming her defenseless child which is oftentimes in her sole custody in our society. Acts of such mothers are branded as mental illness rather than plain cruelty. While most people (men and women alike) tend to protect, and not harm a child, the real bonding can happen beetween two independent, mature adults.
For those deficient in tryptophan, supplemental tryptophan and 5-HTP could be somewhat effective,[17] although a meta-analysis found barely statistically significant results (Odds Ratio of 1.3-13.2) from a statistically subpar collection of studies, and based on the inclusion criteria it set it had to expand its analysis to both 5-HTP and Tryptophan to get two studies to assess.[23]

You can browse Drugs A-Z for a specific prescription or over-the-counter drug or look up drugs based on your specific condition. This information is for educational purposes only, and not meant to provide medical advice, treatment, or diagnosis. Remember to always consult your physician or health care provider before starting, stopping, or altering a treatment or health care regimen.
Hey mate, I’m getting a shoulder reconstrcution in about 2 weeks. Do you think that TB-500 and BPC-157 would help heal something as complex as this. Or do you think that stacking something like GHRP-6 and CJC-1295 would work better because this would assist in muscle growth and strength gains of surrounding muscles etc. Also if chose to use peptides when do you think I should start using them, I will be in a sling for 6weeks after surgery with only passive movements.
When combined with antidepressants of the MAOI or SSRI class, very high parenteral doses of 5-HTP can cause acute serotonin syndrome in rats.[23][24] It is unclear if such findings have clinical relevance, as most drugs will cause serious adverse events or death in rodents at very high doses. In humans 5-HTP has never been clinically associated with serotonin syndrome, although 5-HTP can precipitate mania when added to an MAOI.[25]