Social behavior[66][111] and wound healing: Oxytocin is also thought to modulate inflammation by decreasing certain cytokines. Thus, the increased release in oxytocin following positive social interactions has the potential to improve wound healing. A study by Marazziti and colleagues used heterosexual couples to investigate this possibility. They found increases in plasma oxytocin following a social interaction were correlated with faster wound healing. They hypothesized this was due to oxytocin reducing inflammation, thus allowing the wound to heal more quickly. This study provides preliminary evidence that positive social interactions may directly influence aspects of health.[112] According to a study published in 2014, silencing of oxytocin receptor interneurons in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice during the sexually receptive phase of the estrous cycle.[113] Oxytocin evokes feelings of contentment, reductions in anxiety, and feelings of calmness and security when in the company of the mate.[101] This suggests oxytocin may be important for the inhibition of the brain regions associated with behavioral control, fear, and anxiety, thus allowing orgasm to occur. Research has also demonstrated that oxytocin can decrease anxiety and protect against stress, particularly in combination with social support.[114] It is found, that endocannabinoid signaling mediates oxytocin-driven social reward.[115]
Researchers often investigate the effects of hormones on behavior in laboratory experiments with student subjects. Some studies show that when you give people oxytocin they become more generous and trusting. In others that administer testosterone to men, the opposite happens. The strength of such studies is that they can demonstrate cause and effect – the behavior change only occurs in subjects receiving hormones, not in those who get a placebo. But this research has weaknesses as well: it often focuses on single hormones, ignoring their potential interactions, and behavior is measured with highly artificial tasks.
The enzyme dopamine decarboxylase (aromatic L-amino acid decarboxylase) mediates the conversion of 5-HTP into serotonin, and this enzyme is expressed in stomach tissue.[53] Inhibition of this enzyme in the stomach during 5-HTP ingestion is thought to promote the concentration of 5-HTP that reaches neural tissue, which is supported by a study using 100-200mg Carbidopa (pharmaceutical inhibitor) alongside 5-HTP to increase radioactivity of 5-HTP (indicative of neural accumulation) in humans.[54]
Thymosin beta(4), a small ubiquitous protein containing 43 aa, has structure/function activity via its actin-binding domain and numerous biological affects on cells. Since it is the major actin-sequestering molecule in eukaryotic cells and is found essentially in all cells and body fluids, thymosin beta(4) has the potential for significant roles in tissue development, maintenance, repair, and pathology. Several active sites with unique functions have been identified, including the amino-terminal site containing 4 aa (Ac-SDKP) that generally blocks inflammation and reduces fibrosis. Another active site at the amino terminus contains 15 aa, including Ac-SDKP, and promotes cell survival and blocks apoptosis, while a short sequence containing LKKTETQ, the central actin-binding domain (aa 17-23) plus 1 additional amino acid (Q), promotes angiogenesis, wound healing, and cell migration. Several additional biological activities have been identified but not yet localized in the molecule, including its antimicrobial activity, the induction of various genes (including laminin-5, MMPs, TGF beta, zyxin, terminal deoxynucleotidyl transferase, and angiogenesis-related proteins), and the ability to activate ILK/PINCH/Akt, and other signaling molecules important in both apoptosis and inflammatory pathways. This review details these important physiologically and pathologically active sites and their potential therapeutic uses.
Recent preclinical studies by us and others have revealed that endogenous neurorestoration is present after TBI, including neurogenesis, axonal sprouting, synaptogenesis, and angiogenesis, which may contribute to the spontaneous functional recovery.13-18 In addition, treatments that promote these neurorestorative processes have been demonstrated to improve functional recovery after brain injury.19,20 However, clinical trials in TBI have primarily targeted neuroprotection, and trials directed specifically at neurorestoration have not been conducted. The essential difference between neuroprotective and neurorestorative treatments is that the former target the lesion that is still not irreversibly injured and the latter treat the intact tissue.19 Thus, neurorestorative treatments can be made available for a larger number of TBI patients.
Skin damage and aging are induced to a large extent by free radicals from the sun and environmental pollutants and from oxidants produced during infection and inflammation. Lipid peroxidation of membranes and increased inflammatory substances, such as thromboxanes and leukotriens, add insult to injury. While skin damage accumulates with age, repair processes slow down. Thus, any boost by a molecule that would reduce free radicals and accelerate molecular events in healing has the potential to hasten skin repair. Tb4 has such healing qualities.
Like I said, it’s amazing stuff. And it shouldn’t come as a surprise that it affects that amazing part of your brain so intimately involved in keeping you safe…the amygdala. Remember, trust has a lot to do with survival among social animals who depend on each other for safety and protection. Show someone an untrustworthy face, and the amygdala is one of two areas that become more active than anywhere else in the brain.7 It is apparently programmed for reading trust just as it is for snakes or spiders.
Loading is not absolutely necessary, it is only done to achieve results faster. Loading means taking doses more frequently to build up initial tan faster thus getting in tan maintenance mode sooner. Typical loading is done by taking 0.5mg once a day until desired skin tone is achieved. Loading dose can slightly vary from person to person, depending on skin type, bodyweight and other factors, but 0.5mg is pretty standard for most

How does MT-1 compare to MT-2? In terms of darkening the pigmentation of skin to enhance and individuals tan, both types have been proven to work in a number of clinical trials. However, the side effects using MT-2 are more common, but offsetting this is the fact that the darkening effect using MT-2 can be seen faster. It's important to note that the dosages for Melanotan-1and Melanotan-2 are different. For example, a sometimes recommended beginning dose of MT1 is 1mg, while a beginning dose of MT2 is often only 0.25mg.
Side effects:  Side effects for Melanotan 2 include nausea, appetite loss, facial flushing and increased libido. Side effects are generally mild and tend to diminish over time. Some research suggests nausea can be reduced by injecting MT-II after dinner or before bed. Athletes and bodybuilders have injected peptides like Melanotan 2 intermittently to prolong their tan since a tan aided by Melanotan can last 2-3 times as long as a normal tan. Like other peptides, Melanotan is a fragile molecule, therefore Melanotan nasal sprays, pre-mixed peptides, pills, oral and loose powder are not often legitimate for research effectiveness.
Oxytocin secreted from the pituitary gland cannot re-enter the brain because of the blood-brain barrier. Instead, the behavioral effects of oxytocin are thought to reflect release from centrally projecting oxytocin neurons, different from those that project to the pituitary gland. Oxytocin receptors are expressed by neurons in many parts of the brain and spinal cord, including the amygdala, ventromedial hypothalamus, septum and brainstem.

Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity worldwide. No effective pharmacological treatments are available for TBI because all Phase II/III TBI clinical trials have failed. This highlights a compelling need to develop effective treatments for TBI. Endogenous neurorestoration occurs in the brain after TBI, including angiogenesis, neurogenesis, synaptogenesis, oligodendrogenesis and axonal remodeling, which may be associated with spontaneous functional recovery after TBI. However, the endogenous neurorestoration following TBI is limited. Treatments amplifying these neurorestorative processes may promote functional recovery after TBI. Thymosin beta4 (Tβ4) is the major G-actin-sequestering molecule in eukaryotic cells. In addition, Tβ4 has other properties including anti-apoptosis and anti-inflammation, promotion of angiogenesis, wound healing, stem/progenitor cell differentiation, and cell migration and survival, which provide the scientific foundation for the corneal, dermal, and cardiac wound repair multicenter clinical trials. Here, we describe Tβ4 as a neuroprotective and neurorestorative candidate for treatment of TBI.
But we have to be just as good at recognizing who we can trust, so the system needs fine-tuned control. That’s apparently where oxytocin comes in. The amygdala, that critical organ for our biological risk response, has a high concentration of receptors for oxytocin. In the second set of those gambling experiments with the volunteers and the trustees, researchers used fMRI to watch the brains of the volunteers as they made their choices. As the levels of oxytocin in the brain went up compared with the placebo group, activity in the amygdala went down! Oxytocin diminishes the amygdala’s ability to send out the message “Warning! Warning! I don’t trust this guy.”
It turns out oxytocin is responsible for a lot more than just love. New science has found that this amazing molecule also influences how sociable each of us is, allowing us to 'tune in' to the social information around us, perceiving it in much higher resolution. Scientists are now applying this new knowledge in the lab, and as reporter Dr Graham Phillips finds out, they're discovering oxytocin's great potential to treat social disorders, like drug addiction and alcoholism.

Down syndrome. Some research shows that giving 5-HTP to infants with Down syndrome might improve muscle and activity. Other research shows that it does not improve muscle or development when taken from infancy until 3-4 years of age. Research also shows that taking 5-HTP along with conventional prescription drugs does improve development, social skills, or language skills.

×