Jump up ^ Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N, Stoffler D, Aebi U, Mannherz HG (Jan 2002). "Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin". Journal of Molecular Biology. 315 (4): 613–25. doi:10.1006/jmbi.2001.5281. PMID 11812134.

A user knowing their skin type in relation to the Fitzpatrick scale is important because it will dictate dosing needs. It should be noted that those who will benefit the most from this product are those in the upper spectrum of the Fitzpatrick scale (Types 1, 2 and 3 especially). Skin type 1 and 2 users will typically take longer to see any results from this product, however once beautiful tan is obtained maintenance is easy.


Uterine contraction important for cervical dilation before birth and causes contractions during the second and third stages of labor. Oxytocin release during breastfeeding causes mild but often painful uterine contractions during the first few weeks of lactation. This also serves to assist the uterus in clotting the placental attachment point postpartum. However, in knockout mice lacking the oxytocin receptor, reproductive behavior and parturition is normal.[4]
Oxytocin is a hormone that also acts as a neurotransmitter in the brain. Some popular media have incorrectly labeled it the “love hormone,” because it is associated with good feelings and emotions. But its role in the body is much more complex than that. It is not a bliss or hug hormone, but it does appear to be connected to human emotions and the regulation of childbirth and breast-feeding.

The reality is that people are always going to self-medicate. Boots, Amazon and H&B all sell 5-HTP, and in theory you could keep buying it and taking it for as long as you like. But it's important to know the facts. It shouldn't be used in conjunction with an SSRI, for example. In that situation, if the body is preventing serotonin breakdown while also getting extra serotonin, which leads to seriously unhealthy levels of serotonin activity.
Cells were incubated for 48 hours with the indicated times with 200 μM H2O2 (A) and the indicated concentrations of H2O2 (B) for 48 hours. The mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. Data were representative of three independent experiments. The bar graph shows the fold increase in protein or mRNA expression compared with control cells. * Statistically significant differences compared with the control, p<0.05.
In a landmark 1979 study3, Cort Pedersen and Arthur Prange at the University of North Carolina in Chapel Hill showed that giving oxytocin to virgin rats could trigger maternal behaviours: the animals would build nests, lick or crouch over unfamiliar pups and even return lost pups to the nest. Researchers went on to show that oxytocin signalling in the brains of prairie voles (Microtus ochrogaster) helps the animals to form lifelong pair bonds4 — a rarity among mammals. In 2012, researchers even found a version of oxytocin in the tiny roundworm Caenorhabditis elegans, where it helps the animals find and recognize mates5.
The reason for the difference is the density of oxytocin receptors in the brain. Life pair bonders, like prairie voles or, indeed, ourselves, have a high density of receptors in the reward centre of the brain. Non-pair bonders, like meadow voles, certainly enjoy sex, but their lower density of receptors means it doesn't matter so much who the partner is. So it's not the oxytocin itself making sex enjoyable. What it's doing is influencing our mating behaviour.

For example, when a mother is nursing her baby, that stimulation from the breast is going into the brain and causing those oxytocin neurons to fire and release oxytocin directly into the brain. That's much more powerful than what happens with a nasal spray. So I think that, you know, in the future, we may have these drugs that can, in a very potent way, tap into this oxytocin system to treat many different kinds of disorders.
The oxytocin peptide is synthesized as an inactive precursor protein from the OXT gene.[18][19][20] This precursor protein also includes the oxytocin carrier protein neurophysin I.[21] The inactive precursor protein is progressively hydrolyzed into smaller fragments (one of which is neurophysin I) via a series of enzymes. The last hydrolysis that releases the active oxytocin nonapeptide is catalyzed by peptidylglycine alpha-amidating monooxygenase (PAM).[22]
To determine whether MAPK and NF-κB signaling pathways were involved in the anti-osteoclastogenic function of Tβ4, the effect of Tβ4 peptide on the phosphorylation levels of ERK, JNK, and p38 MAPK(s) as well as the nuclear translocation of NF-κB p65 in RANKL-stimulated BMMs were examined. As shown in Fig 8B, Tβ4 peptide inhibited the RANKL-induced phosphorylation of p38, ERK, and JNK and nuclear translocation of NF-κB p65.

The need to balance hunting pride and social obligations, and the necessity to reconnect with a family that depends on their provisioning were likely experienced by men throughout much of human evolutionary history. Oxytocin is found in all mammals and originated in the mother-infant bond, where it helps with childbirth, nursing and bonding. In some species, this existing hormonal mechanism could then be harnessed for novel contexts – for instance, men investing in pair-bonding and family provisioning, which is rare among mammals.
Neurovascular units within the central nervous system consist of endothelial cells, pericytes, neurons and glial cells, as well as growth factors and extracellular matrix proteins that are close to the endothelium.72,73 Neurovascular units provide niches for neural stem/progenitor cells in the adult brain and, within these units, newly-generated immature neurons are closely associated with the remodeling vasculature. The generation of new vasculature facilitates several coupled neurorestorative processes including neurogenesis and synaptogenesis, which improve functional recovery.74-76 The vascular production of stromal-derived factor 1 and angiopoietin 1 is involved in neurogenesis and promotes behavioral recovery after stroke.77 The disruption of this neurovascular coordination has been observed in a variety of brain conditions including infection, stroke and trauma.78 The injured brain promotes angiogenesis and neurogenesis,13,32,69,79-84 that may contribute to spontaneous functional recovery from injuries such as stroke and TBI. Neurorestorative agents that increase angiogenesis and neurogenesis have been shown to improve functional outcome following brain injury.19,33 Vascular endothelial cells within the neurovascular niche affect neurogenesis directly via contact with neural progenitor cells, while soluble factors from the vascular system that are released into the CNS enhance neurogenesis via paracrine signaling.85 Here, we demonstrate that Tβ4 treatment promotes both angiogenesis and neurogenesis in rats after TBI, suggesting that the neurovascular remodeling at least partially contributes to Tβ4-mediated improvement in functional recovery. A better understanding of molecular mechanisms in the neurovascular niches will be important for developing novel angiogenic and neurogenic therapies for brain injuries.

5-HTP works in the brain and central nervous system by increasing the production of the chemical serotonin. Serotonin can affect sleep, appetite, temperature, sexual behavior, and pain sensation. Since 5-HTP increases the synthesis of serotonin, it is used for several diseases where serotonin is believed to play an important role including depression, insomnia, obesity, and many other conditions.
×